
A Residual Meta-Reinforcement Learning Method
for Training Fault-Tolerant Policies for Quadruped

Robots
Ci Chen

State Key Laboratory of Industrial
Control and Technology

Zhejiang University
Hangzhou, China

chenci107@zju.edu.cn

Chao Li
DeepRobotics Company

Hangzhou, China
lichao@deeprobotics.cn

Rong Xiong
State Key Laboratory of Industrial

Control and Technology
Zhejiang University
Hangzhou, China
rxiong@zju.edu.cn

Hongbo Gao
School of Information Science and Technology
University of Science and Technology of China

Hefei, China
ghb48@ustc.edu.cn

Yue Wang*
State Key Laboratory of Industrial Control and Technology

Zhejiang University
Hangzhou, China

wangyue@iipc.zju.edu.cn

Abstract—Motor locking is a common issue in quadruped
robots that can have serious consequences if the robot continues
executing its original commands. However, the static stability
of the quadruped allows for the flexibility to adjust the robot’s
control policy so that it can maintain movement along a pre-
determined trajectory. In this paper, we introduce a residual meta
reinforcement learning method comprising a trajectory generator
and a meta-reinforcement learning corrector. The trajectory
generator generates a reference joint position, while the corrector
utilizes contextual reasoning to determine the appropriate action
in the event of a motor locking. This action is employed to
rectify the reference joint position, resulting in a fault-tolerant
control strategy for the robot. We conducted comprehensive
simulation experiments to validate our proposed algorithm, which
demonstrates that the robot can still follow the predefined
trajectory, even in the presence of a motor locking. Moreover,
our proposed approach outperforms all baseline algorithms.

Index Terms—Quadruped Robots, Reinforcement Learning,
Fault Tolerance

I. INTRODUCTION

Quadruped robots are the most extensively utilized type
of legged robots, renowned for their exceptional mobility
in unstructured environments [1]. They hold the potential to
replace humans in complex and extreme scenarios such as
nuclear power plants and rescue sites. However, in extreme
environments, it becomes challenging for humans to access the
scene and perform repairs on the quadruped robot in the event
of a malfunction. Hence, studying fault-tolerant control for
quadruped robots becomes crucial under such circumstances
[2]. One prevalent form of failure is motor locking, which

*Corresponding Author
This work was supported in part by the National Key R&D Program of

China under Grant 2021ZD0114500, and in part by the National Natural
Science Foundation of China under Grant U2013601.

can lead to unpredictable behavior if the quadruped robot
continues following its initial instructions.

While there have been numerous studies on the motion
control of quadruped robots, most of them have focused on
enhancing their agility performance, with only a few examin-
ing fault-tolerant control. For instance, [3] and [4] propose a
gait planning method that ensures the effectiveness of fault-
tolerant gaits while avoiding deadlocks caused by kinematic
constraints. Reference [5] suggests a method that involves
adjusting the robot’s center of mass position and combining
gait coordination information to achieve fault tolerance perfor-
mance. However, this method requires additional mechanisms.
Additionally, [2] proposes a fault-tolerant technique that uses
an equivalent geometric model to reconstruct the failed leg’s
workspace when a joint becomes locked. Furthermore, it
introduces a non-linear approximation formula to optimize
body posture and standing height, enabling compatibility with
Whole-Body Control (WBC) for achieving steady and contin-
uous forward movement. However, these methods entail a sig-
nificant amount of expert knowledge and involve a laborious
adjustment process. Moreover, different control strategies must
be designed based on the specific motor damage situation.

The progress in reinforcement learning algorithms has en-
abled the development of robot fault-tolerant strategies uti-
lizing these algorithms. For instance, approaches like [6]–
[8] employ model-based reinforcement learning methods that
utilize well-designed neural networks to predict the robot’s
next state. Subsequently, optimization algorithms (such as
the random shooting method or cross-entropy optimization
algorithm) are used to select the next action. However, these
methods have only been validated on Ant tasks within Gym
environments, and their applicability to the physical world

979-8-3503-1630-8/23/$31.00 ©2023 IEEE

919

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 U

nm
an

ne
d

Sy
st

em
s (

IC
U

S)
 |

 9
79

-8
-3

50
3-

16
30

-8
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

U
S5

86
32

.2
02

3.
10

31
84

21

Authorized licensed use limited to: Zhejiang University. Downloaded on July 09,2024 at 04:40:06 UTC from IEEE Xplore. Restrictions apply.

remains uncertain.
In this paper, we introduce a residual meta-reinforcement

learning technique that offers fault-tolerance policies for
quadruped robots in motor locked situations. This approach
combines a reference action generator and a corrector utilizing
the meta-reinforcement learning method. The former offers a
motion paradigm for the quadruped, while the latter captures
locked joint information through the context to produce opti-
mal strategies, which are used to correct the reference action
in the joint space to obtain optimized joint positions. Our
contributions include the following aspects:

(1) We propose a novel fault-tolerant strategy for quadruped
robots in motor locked situations, which can offer opti-
mized strategies specifically tailored to different types of
motor locked scenarios.

(2) We conduct comprehensive experiments in a simulated
environment, and the results of the experiments demon-
strate that the proposed method surpasses the perfor-
mance of the baseline algorithms.

II. METHODOLOGY

A. Problem Statement

The motion of quadrupeds can be described as a Markov
Decision Process (MDP), typically expressed as the tuple
〈S,A, r, p, γ〉. Here, S represents the state space, A indicates
the action space, r denotes the reward function, p(st+1| st, a)
signifies the transition function, and γ represents the reward
discount factor. Within the framework of reinforcement learn-
ing, the RL algorithm aims to discover an optimal policy π∗

so that for each state st, an optimal action at is chosen that
maximizes the cumulative discounted rewards.

π∗ = arg maxEπ

[
T−1∑
t=0

γtrt

]
(1)

We utilize residual reinforcement learning to address the
problem. Specifically, the action at consists of two compo-
nents: the joint position derived from the reference action
generator πG(at|st) and an additional component acquired
through meta reinforcement learning πθ(at|st, z).

at = πG(at|st) + πθ(at|st, z) (2)

Fig. 1 illustrates the overall framework. During the training
phase, training is conducted for both the context encoder and
policy network. The context encoder generates a latent vector
z that is derived from the context information, serving as
input for training the policy network. During the adaptation
phase, the robot first executes a short trajectory to obtain
an appropriate z through the context encoder. This derived
z is subsequently utilized as part of the input for the policy
network to determine πθ(at|st, z). Meanwhile, the reference
action generator can output πG(at|st) given the reference leg.
The final target joint position of the robot is the result of
adding these two components together.

B. Reference Action Generator

The legs of the quadruped robot go through a repetitive
motion while it moves. We define one full cycle as Tstride,
which consists of two phases: the swing phase Tsw and the
stance phase Tst. More precisely, Tstride = Tsw + Tst. We
designate an empirical value of 0.2s for Tsw, and set Tst =
2Lspan
vd

, where vd stands for the predetermined speed (set at
0.5m/s), and Lspan represents half of the stride length.

The phase generation of the reference action generator relies
on ground contact information obtained from the non-injured
leg. If the motor in the front right (FR) leg, hind left (HL) leg,
and hind right (HR) is immobilized, we consider the front left
(FL) leg to be the reference leg. On the flip side, if the motor
in the FL leg becomes immobilized, we designate the FR leg
as the reference leg. A touch-down event is classified as when
the force exerted in the z-direction surpasses a predetermined
threshold, indicating that the reference leg has made contact
with the ground. The occurrence of this event is indicated by
a boolean value TD, which is set to one when the reference
leg is touching the ground and zero during the swing phase.
The phase of each leg can be obtained from (3-5).

telapseref =

{
t− tTDref if 0 < telapseref < Tstride

Tstride if telapseref > Tstride
(3)

tTDref = t if TD = 1 (4)

ti = telapseref −∆Sref,iTstride (5)

where tTDref represents the moment when the reference leg
touches down on the ground, telapseref denotes the time elapsed
since tTDref , and ti corresponds to the individual clock for
each leg, with i ∈ {FL,FR,HL,HR}. In this context,
∆Sref,i indicates the phase difference of leg i relative to the
reference leg. We utilize the trot gait in this paper. Therefore,
when FL is chosen as the reference leg, the value is shown
in (6). Conversely, when FR is selected as the reference
leg, the value is shown in (7). The time for each leg is
normalized by mapping ti to Si(t). Specifically, during the
swing phase, 0 ≤ Si(t) ≤ 1, whereas during the stance phase,
1 ≤ Si(t) ≤ 2. More information can be found in (8).

∆SFLtrot =

∆Sref,FL
∆Sref,FR
∆Sref,HL
∆Sref,HR

 =

0.0
0.5
0.5
0.0

 (6)

∆SFRtrot =

∆Sref,FL
∆Sref,FR
∆Sref,HL
∆Sref,HR

 =

0.5
0.0
0.0
0.5

 (7)

Si(t) =

ti+Tstride

Tst
−Tstride < ti < −Tsw

ti+Tsw
Tsw

−Tsw < ti < 0
ti
Tst

0 < ti < Tst
ti−Tst
Tsw

Tst < 0 < Tstride

(8)

920
Authorized licensed use limited to: Zhejiang University. Downloaded on July 09,2024 at 04:40:06 UTC from IEEE Xplore. Restrictions apply.

Replay Buffer

Context
Encoder

(, ,)Q s a z

(,)a s z

Lcritic

Lactor

Inverse
Kinematics

 Joint PD
controller

Phase
Generator

Swing: Bezier Curve

Stance: Sinusoidal Curve

E 0 1N（ ，）

KLD
cS

z

reference
joint position

residual
joint position

target
joint torque

reference
leg index

Fig. 1. Framework of the proposed method.

After identifying the phase, we use it to create the foot
trajectory for the robot. For the swing phase of the leg, we
employ a Bezier curve [9] as the reference trajectory. On the
other hand, for the stance phase, we integrate a sinusoidal
curve as the reference trajectory.

pi =

pswi (Si(t)) =

n∑
k=0

ckB
n
k (Si(t)) 0 ≤ Si(t) ≤ 1[

psti,x(Si(t)) = Lspan(1− 2Si(t))

psti,y(Si(t)) = σ cos
(

π
2Lspan

psti,x(Si(t))
)] 1 ≤ Si(t) ≤ 2

(9)
where ck represents the k-th control point and Bnk (Si(t))

symbolizes the Bernstein polynomial of degree n. pswi refers
to the robot’s foot position during the swing phase, while psti
represents the foot’s position during the stance phase, with
σ acting as the amplitude variable. By employing inverse
kinematics, we can ascertain the reference joint position of
the robot.

πG(at |st) = IK(pi) (10)

The term st represents the information about the robot’s
foot contact, which is used to determine if a touchdown (TD)
event has happened.

C. Meta Reinforcement Learning
When motors get locked, it results in changes to the robot’s

dynamics model, leading to diverse transition functions. While
Randomization [10] can tackle this issue by training a gener-
alized model across a range of scenarios, it might result in
the policy losing optimality. Therefore, in this paper, we favor
a context-based meta-reinforcement learning approach [11] in
an effort to develop a policy capable of delivering superior
strategies under various motor locked situations.

We leverage the context c to infer the latent vector z, which
acts to discern the current task T . Here, cTn = (sn, an, rn, s

′
n)

represents a state transition in task T , with cT1:N encapsulating
all prior experiences. To procure z, we train a context encoder
denoted by Eφ. In light of the fact that a fully observed
Markov Decision Process (MDP) should respect permutation

invariance, that is to say, for task inference, access to one tuple
is necessary regardless of the chronological sequence of tuple
observation. Keeping this paradigm in mind, we represent the
latent vector as follows:

z ∼ N (ΠN
n=1E

µ
φ(cn),ΠN

n=1E
σ
φ(cn)) (11)

where N denotes the normal distribution. During the training
phase, we infer z from the training task to characterize the
specific task distribution and learn to deduce a new task based
on prior experiences. During the adaptation stage, we initially
collect experience to infer z for the present task, then we
utilize z to extract the policy appropriate for that task. To
enhance data utilization, we integrate the off-policy Reinforce-
ment Learning (RL) method, Soft Actor-Critic (SAC) [12],
with the context encoder and consider the latent vector z as
part of the state. The loss function for each network is outlined
as follows:

Lencoder = Lcritic+βDKL(N (
N

Π
i=1

Eµφ(cn),
N

Π
i=1

Eσφ(cn))

∥∥∥∥N (0, 1))

(12)

Lcritic = E (s,a,r,s′)∼B
z∼Eφ(z|c)

[
1

2

(
Qθ(s, a, z)− (r + V̄ (s′, z̄))

)]2

(13)

Lactor = E s∼B,a∼πθ
z∼Eφ(z|c)

[
α log πθ(a |s, z̄)− min

i=1,2
Qθi(s, a, z̄)

]
(14)

where V̄ signifies the target value network and z̄ indicates
the absence of gradient computations being run through it. As
shown in Fig. 1, between the replay buffer and the context
encoder, there is a sampler referred to as Sc. It utilizes the
recently collected samples in the replay buffer to train the
context encoder and achieve an approximate on-policy training
effect. Conducting an on-policy during the adaptation stage
ensures the alignment of the two distributions. When training
the actor and critic networks, sampling is performed directly
from the replay buffer, implementing an off-policy training
approach that enhances sample efficiency.

921
Authorized licensed use limited to: Zhejiang University. Downloaded on July 09,2024 at 04:40:06 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. The trajectory of the robot in the ablation experiment, begins at (0,0), with a movement command to move right.

III. EXPERIMENT

A. Experimental Setup
1) Observation-action space and reward function: The

state, denoted by st ∈ R37, consists of a number of compo-
nents. These components include the linear velocity and pose
of the base, as well as the angular velocity. Furthermore, the
state also includes the angle and angular velocity for each
joint, along with four binary values that indicate whether each
foot is in contact with the ground.

The action at ∈ R12 corresponds to the desired angles
for the 12 motors. Notably, the angle of the locked motor
persists as constant, irrespective of the network’s output.
Following this, the joint angles are translated into torques via a
Proportional-Derivative (PD) controller prior to being relayed
to the robot.

Our reward function includes six components, outlined as
follows: (1) Offering rewards for the robot’s body to move in
a specific direction. (2) Imposing penalties for roll and pitch
rotations of the robot’s body. (3) Encouraging the movement
of the robot’s feet in the desired direction. (4) Applying a
cost penalty to the motors. (5) Penalizing contact between
the robot’s body (excluding the feet) and the ground. (6)
Promoting contact between the feet and the ground.

2) Training details: During the training phase, we leverage
Pybullet as the simulation environment, integrating URDF
sourced from DeepRobotics. We use PyTorch to build the
network and utilize an NVIDIA 3080ti to accelerate training.
Since the robot does not need to turn, the rotation angles of
the four abduction joints are negligible, taking into account the
forward movement task. Consequently, if these joints become
locked, the impact on the task is minimal. Hence, we have
chosen the four hip joints and four knee joints as probable
motors that could experience locking. In the event of a hip
joint lock, we set its angle to -0.9rad, whereas for a locked
knee joint, we position it at 1.8rad. The network structure is
presented in Tab.I, while the values of certain hyperparameters
are displayed in Tab.II.

B. Ablation Experiment
This section includes four ablation experiments that were

designed to access the impact of each component in the

TABLE I
NETWORK ARCHITECTURE

Module Inputs Hidden Layers Outputs

Context Encoder(MLP) st, at, rt [200,200,200] z
Actor Network(MLP) st, z [300,300,300] at+1

Critic Network(MLP) st, at, z [300,300,300] Q value

TABLE II
HYPERPARAMETER SETTINGS

Hyperparameter Value

Non-linearly ReLU
Discount factor 0.99

Batch Size 256
Context encoder learning rate 3e-4

Actor/Critic learning rate 3e-4
Optimizer Adam

KL loss weight 1

proposed method. The setting of each experiment is outlined
as follows:

NoRef+SAC: Without using the reference action gener-
ator. The robot’s initial default joint angle Jinit, is set
to ([0,−0.9, 1.8] × 4), and the action space is set to
([±0.2,±0.7,±0.7]×4). The final angles of each joint Jfinal,
are obtained by adding Jact to Jinit. The action Jact is chosen
by SOTA off-policy method SAC [12] and the joints are
randomly selected to be locked during the training process.

NoRef+MetaRL: Without using the reference action gener-
ator. The action space and the final joint angle are designed to
be the same as NoRef+SAC. The meta RL algorithm selects
the action Jact. The training set is {FL hip, FL knee, FR hip,
FR knee}, and the testing set is {HL hip, HL knee, HR hip,
HR knee}.

Ref+SAC: Utilizing the proposed reference action genera-
tor. The SAC algorithm selects actions, while the locked joints
are randomly chosen during the training process.

Ref+MetaRL: The proposed method. The training set is
{FL hip, FL knee, FR hip, FR knee}, and the testing set is
{HL hip, HL knee, HR hip, HR knee}.

922
Authorized licensed use limited to: Zhejiang University. Downloaded on July 09,2024 at 04:40:06 UTC from IEEE Xplore. Restrictions apply.

TABLE III
ANALYSIS OF COMPARISON EXPERIMENT

Criterion
Method

Joint
FL hip FL knee FR hip FR knee HL hip HL knee HR hip HR knee

x-distance
GrBAL 0.4571±0.0744 0.8672±0.0387 0.4741±0.2050 0.8257±0.1397 0.5017±0.1336 0.6565±0.2007 0.1730±0.1431 0.7847±0.0514

ReBAL 0.4311±0.0985 0.8320±0.0772 0.4796±0.1081 0.8148±0.0890 0.4513±0.0590 0.7873±0.1354 0.2959±0.0367 0.9173±0.0509

Ref+MetaRL(Ours) 2.1608±0.0954 2.2581±0.0573 2.2314±0.0296 2.3482±0.1067 2.1246±0.0286 2.2728±0.0749 2.2822±0.0558 2.1976±0.2224

cos(θ)

GrBAL 0.8731±0.0833 0.9217±0.0430 0.8504±0.1104 0.9633±0.0436 0.8367±0.1251 0.9229±0.0653 0.3480±0.2709 0.9313±0.0582

ReBAL 0.9117±0.0872 0.8994±0.0970 0.8289±0.1311 0.9483±0.0232 0.8876±0.0413 0.9328±0.0610 0.5465±0.1023 0.9779±0.0181

Ref+MetaRL(Ours) 0.9974±0.0021 0.9956±0.0013 0.9982±0.0004 0.9964±0.0007 0.9990±0.0012 0.9988±0.0002 0.9999±0.0001 0.9983±0.0015

Yaw

GrBAL 0.6360±0.1084 0.2720±0.0297 0.3893±0.2189 0.1848±0.1070 0.4775±0.1548 0.3557±0.1888 0.9289±0.2700 0.2986±0.1707

ReBAL 0.4995±0.0678 0.2283±0.0827 0.7275±0.1171 0.1973±0.0779 0.4000±0.0749 0.3189±0.1725 0.7002±0.0171 0.2316±0.1421

Ref+MetaRL(Ours) 0.0493±0.0031 0.0588±0.0032 0.0523±0.0029 0.0475±0.0035 0.1003±0.0.0238 0.0350±0.0020 0.0757±0.0036 0.0535±0.0077

Fig. 3. The rewards comparison of ablation experiments. The x-axis indicates
the number of epochs, and the y-axis represents the cumulative rewards.

In Fig. 3, we display the rewards achieved by four different
methods, each tested under three unique seeds. Furthermore,
in order to provide a more perceptible representation of the
robot’s trajectory, we visually present the robot’s trajectory
using a single random seed in Fig. 2. Upon analyzing the data
from Fig. 3, it is evident that the proposed method produced
the highest rewards. Ref+SAC and NoRef+SAC closely follow
while NoRef+MetaRL returns comparatively lower rewards.
Fig. 2 highlights that only the proposed method and Ref+SAC
successfully move the robot in all situations, with the proposed
method demonstrating a straighter trajectory.

The superiority of meta-RL is highlighted by comparing the
proposed method with Ref+SAC. Our proposed method ap-
plies contextual reasoning to derive latent vectors better suited
to varied joint-locked situations, in contrast to Ref+SAC,
which opts for a broader generalization across joint-locked
situations, albeit at the cost of performance. It’s pertinent to
note that the training process of our method only involved the
task in the training set, with no encounters with the task in the
testing set, unlike Ref+SAC which factored in all situations.
Despite this, the proposed method yields better trajectories
for the task in the testing set compared to Ref+SAC, demon-
strating the method’s noteworthy performance in unknown
environments.

NoRef+MetaRL’s relatively low rewards suggest that meta-
RL’s effectiveness is contingent on the design of the action
space. Fig. 2 illustrates that the robot remains stationary with
minimal movement when NoRef+MetaRL is used. In our
proposed method, the use of a reference action generator to
provide priors facilitates a speedier accumulation of positive

samples in the replay buffer, which reduces sparse rewards and
significantly enhances training performance.

C. Comparison with Baselines

In this section, we evaluate the proposed approach by com-
paring it to two model-based reinforcement learning methods.
The baselines are introduced first.

Gradient-Based Adaptive Learner (GrBAL, [6]): GrBAL
employs gradient-based meta-learning, specifically MAML
(Model-Agnostic Meta-Learning), to optimize an adaptive
meta-objective for training a dynamics model, enabling online
adaptation.

Recurrence-Based Adaptive Learner (ReBAL, [6]): The
model-based Meta-RL approach, which bears resemblances to
GrBAL in multiple aspects, utilizes a recurrent model. This
approach acquires its own update rule by employing an internal
gating structure.

Tab.III presents the results of our comparative experiments.
The performance is assessed using three distinct evaluation
metrics. Firstly, we measure the distances covered by the robot
in the x-direction, where a greater distance indicates better
performance. The second criterion involves calculating the
cosine of the angle between two vectors: one formed from
the endpoint to the starting point, and the other being (1,0). A
cosine value closer to one infers that the robot’s trajectory is
more finely aligned with the target trajectory. In the end, we
examine the average yaw angle of the robot throughout the
entire trajectory, where lower values indicate a posture that
closely resembles the target posture. According to these three
criteria, our method shows the best performance.

We speculate that the reason for this outcome lies in the
fact that the baseline methods are based on dynamic models,
which perform better on tasks with fewer joints and higher
stability, such as Ant. However, the quadruped robot used in
this paper has a larger number of joints and lower stability,
making the dynamics model less predictable and resulting in
lower performance. On the other hand, the proposed approach,
combining meta-reinforcement learning with residual learning,
does not require the establishment of a dynamic model and can
better handle such challenges.

To provide a clear understanding of the proposed algo-
rithm’s effectiveness, we have included Fig. 4, showcasing the

923
Authorized licensed use limited to: Zhejiang University. Downloaded on July 09,2024 at 04:40:06 UTC from IEEE Xplore. Restrictions apply.

FL
_h

ip
H
R_

kn
ee

w
/o

ad

ap
tiv

e
po

lic
y

w
/

ad
ap

tiv
e

po
lic

y
w

/o

ad
ap

tiv
e

po
lic

y
w

/
ad

ap
tiv

e
po

lic
y

Fig. 4. Snapshot of the robot under different joint locking situations.

snapshot of the robot using both the proposed method and the
traditional approach. By comparing the two, we can assess the
effectiveness of the proposed method.

IV. CONCLUSIONS

In this paper, we propose a fault-tolerant control method
for the robot in the event of joint locking, utilizing a residual
meta-reinforcement learning algorithm. The approach consists
of two parts: a reference trajectory generator and a joint
space action corrector. Simulation experiments have verified
that the proposed method can enable the robot to follow a
predetermined trajectory when a joint is locked. However, in
this paper, only the task of walking forward is considered,
while the quadruped robot has omnidirectional motion capa-
bility. Therefore, in future work, we will further develop the
omnidirectional motion performance of the quadruped robot
under joint stuck conditions. Additionally, we will gradually
address the sim2real problem that arises when deploying the
reinforcement learning algorithm on a physical robot and
achieve verification on the physical robot.

ACKNOWLEDGMENT

This work was supported in part by the National Key R&D
Program of China under Grant 2021ZD0114500, and in part
by the National Natural Science Foundation of China under
Grant U2013601.

REFERENCES

[1] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning
quadrupedal locomotion over challenging terrain,” Science robotics,
vol. 5, no. 47, p. eabc5986, 2020.

[2] J. Cui, Z. Li, J. Qiu, and T. Li, “Fault-tolerant motion planning and
generation of quadruped robots synthesised by posture optimization and
whole body control,” Complex & Intelligent Systems, vol. 8, no. 4, pp.
2991–3003, 2022.

[3] J.-M. Yang, “Kinematic constraints on fault-tolerant gaits for a locked
joint failure,” Journal of Intelligent and Robotic Systems, vol. 45, pp.
323–342, 2006.

[4] C. Pana, I. Resceanu, and D. Patrascu, “Fault-tolerant gaits of quadruped
robot on a constant-slope terrain,” in 2008 IEEE International Confer-
ence on Automation, Quality and Testing, Robotics, vol. 1. IEEE, 2008,
pp. 222–226.

[5] M. Gor, P. M. Pathak, A. Samantaray, J.-M. Yang, and S. Kwak,
“Fault accommodation in compliant quadruped robot through a moving
appendage mechanism,” Mechanism and Machine Theory, vol. 121, pp.
228–244, 2018.

[6] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine,
and C. Finn, “Learning to adapt in dynamic, real-world environments
through meta-reinforcement learning,” arXiv preprint arXiv:1803.11347,
2018.

[7] K. Lee, Y. Seo, S. Lee, H. Lee, and J. Shin, “Context-aware dynamics
model for generalization in model-based reinforcement learning,” in
International Conference on Machine Learning. PMLR, 2020, pp.
5757–5766.

[8] Y. Seo, K. Lee, I. Clavera Gilaberte, T. Kurutach, J. Shin, and P. Abbeel,
“Trajectory-wise multiple choice learning for dynamics generalization
in reinforcement learning,” Advances in Neural Information Processing
Systems, vol. 33.

[9] G. G. Lorentz, Bernstein polynomials. American Mathematical Soc.,
2013.

[10] D. Liu, T. Zhang, J. Yin, and S. See, “Saving the limping: Fault-tolerant
quadruped locomotion via reinforcement learning,” arXiv preprint
arXiv:2210.00474, 2022.

[11] K. Rakelly, A. Zhou, C. Finn, S. Levine, and D. Quillen, “Efficient off-
policy meta-reinforcement learning via probabilistic context variables,”
in International conference on machine learning. PMLR, 2019, pp.
5331–5340.

[12] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR, 2018,
pp. 1861–1870.

924
Authorized licensed use limited to: Zhejiang University. Downloaded on July 09,2024 at 04:40:06 UTC from IEEE Xplore. Restrictions apply.

