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Abstract— For heterogeneous unmanned systems composed
of unmanned aerial vehicles (UAVs) and unmanned ground
vehicles (UGVs), using UAVs serve as eyes to assist UGVs
in motion planning is a promising research direction due to
the UAVs’ vast view scope. However, its limitations on flight
altitude prevent the UAVs from observing the global map.
Thus motion planning in the local map becomes a Partially
Observable Markov Decision Process (POMDP) problem. This
paper proposes a motion planning algorithm for heterogeneous
unmanned systems under partial observation from UAV without
reconstruction of global maps. Our algorithm consists of two
parts designed for perception and decision-making, respectively.
For the perception part, we propose the Grid Map Generation
Network (GMGN), which is used to perceive scenes from
UAV’s perspective and classify the pathways and obstacles.
For the decision-making part, we propose the Motion Com-
mand Generation Network (MCGN). Due to the addition of
the memory mechanism, MCGN has planning and reasoning
abilities under partial observation from UAVs. We evaluate our
proposed algorithm by comparing it with baseline algorithms.
The results show that our method effectively plans the motion
of heterogeneous unmanned systems and achieves a relatively
high success rate.

I. INTRODUCTION

For heterogeneous unmanned systems composed of UAVs
and UGVs, UAVs have advantages of flight height and broad
scope of observation, while UGVs are capable of accurate
operation on ground objects. Thus cooperation between
UAVs and UGVs can significantly improve the efficiency of
task execution. Compared with the egocentric view of UGVs,
the top-down view of UAVs can more accurately perceive
obstacles around UGVs. In the scenarios of unavailable
maps, especially during natural disasters or war zones, it
becomes convenient to have a UAV that serves as an eye
in the sky that explores the environment and generates
trajectories guiding the UGVs on the ground in real-time.

Due to these reasons, some researchers have focused on
motion planning for heterogeneous unmanned systems. [1],
[2], [3], [4] assume that the UAV’s field of vision (FOV)
can capture the entire range from starting point to the target
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Fig. 1. Schematic diagram of partial observation from UAV. OC,OM ,OW
represents camera coordinates system, grid map coordinates system, and
world coordinates system, respectively. The red (resp. green, blue) arrow
represents the x (resp. y, z) axis.

point, and planning is carried out as the global environment
is known. Unfortunately, in many practical applications,
especially when the heterogeneous unmanned systems are
exploring in a wide range of unfamiliar environment, only
part of the overall environment can be observed by UAV
due to its limited perspective (see Fig. 1). To address this,
[5], [6], [7] proposed solutions respectively, all of which
need to reconstruct the global map. Unlike the above work,
our method doesn’t need a reconstruction step, thus saving
computation time.

Precisely, our algorithm consists of two parts: perception
and decision-making. For the former, we propose a genera-
tion network GMGN, which can distinguish obstacles from
passable parts in the pictures taken by UAV. On this basis,
while ensuring navigation accuracy, the segmentation results’
size is reduced to guarantee the real-time performance of the
subsequent decision-making network. For the latter, we pro-
pose MCGN. Thanks for the combinations of value iteration
network and external memory network, it has the abilities
of reasoning and planning simultaneously. Just like humans
explore the unfamiliar environment, it can make a relatively
accurate prediction of future actions by analyzing the scenes
it has seen before and the scenes at present. Its inputs are grid
maps generated by the GMGN, and its outputs are discrete
motion commands for UAVs and UGVs. This paper’s main
contribution is to enable the heterogeneous unmanned system
to plan the motion under partial observation from UAV
without reconstruction of the global map. In our method, the
target can be set anywhere, and the heterogeneous unmanned
system will learn to find the target. If the target position
doesn’t appear within the camera’s FOV, UAV and UGV
keep moving synchronously. UAV will remain hovering if
the target appears in camera’s FOV, and UGV will get to the
target alone.

The rest of this paper is organized as follows. Section
II reviews related work, and we propose our algorithm in
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section III. In section IV, the experiments in the simulation
are delivered to verify our proposed algorithm by comparing
it with baseline algorithms. Finally, section V concludes this
paper and outlines our future work.

II. RELATED WORK

A. Path Planning for Heterogeneous Unmanned Systems

[1] has demonstrated a fully autonomous collaboration of
a UAV and a UGV in a mock-up disaster scenario. The
UAV first maps an area of interest, and then it computes
the fastest mission for the UGV to reach a spotted victim
and provide a first-aid kit. A similar collaborative framework
has been proposed in [2]. The UAV collects images of the
surroundings firstly. A vision-based algorithm is utilized to
recognize roads, pathways, and obstacles, and an enhanced
version of the A* algorithm is applied to calculate a path
around them towards the destination. [3] has developed a
hybrid path planning algorithm to optimize the planned path.
A genetic algorithm is used for global path planning, and a
local rolling optimization is employed to constantly optimize
the genetic algorithm results. [4] has proposed a multi-UAVs
based stereo vision system to assist global path planning for
a UGV even in GPS-denied environments. The proposed
method can optimally generate the depth map of ground
objects and robustly detect obstacles. The above studies
assume that the UAV can observe the global environment.
When the UAV can only see part of the environment, the
following literature explains the planning method of UAV
and UGV. [5] proposed a control scheme for collaborative
navigation, which relies on an incremental map building
strategy proving environment feedback and sampling-based
trajectory planning approach (RRT*). Papachristos et al.
[6] proposed a method that utilizes target iso-probability
curves to plan both UAV and UGV trajectories. For UAVs,
the proposed novel search-planning algorithm determines
paths that traverse a range of iso-probability curves while
covering them with equal effort. Such a search achieves a
balance between exploitation and exploration. In [7], the
UAV acquires imagery which is assembled into orthomosaic
and then classified. These terrain classes are used to estimate
relative navigation costs for the ground vehicle, so energy-
efficient paths may be generated and then executed.

B. External Memory Networks

The neural network is good at pattern recognition and
fast-response decision-making, but it isn’t good at reasoning.
Some research on deep learning uses neural networks with
external memory, which can learn from samples like neural
networks and store complex data like computers. The com-
bination of the two can realize the fast storage of knowledge
and flexible reasoning.

In 2014, Graves et al. [8] have proposed NTM inspired
by Turing Machine architecture, which combines neural
networks with external memory to expand the neural net-
work’s capability. It mainly composed of a controller and
a memory bank. The neural network is seen as the CPU,
and the memory is regarded as the RAM. The controller
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Motion Command 
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Motion Command

Grid Map
(Matrix)
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Fig. 2. Architecture of our proposed algorithm.

determines where to read and write information in the
memory according to the task. In NTM, a set of vectors
is utilized to represent the memory bank. Since the original
NTM, there have been some interesting articles exploring
similar topics. Neural GPU [9] has solved the problem that
NTM cannot perform addition and multiplication operations.
Zaremba et al. [10] have used reinforcement learning to train
NTM to solve simple algorithm problems. Kurach et al. [11]
have imitated the practical computer memory which works
with a pointer. Some papers have also explored differentiable
data structures, such as stacks [12] and queue [13].

On the bases of NTM, Graves et al. [14] have proposed
DNC in 2016, which is the second version of NTM and
improves the addressing mechanism of NTM. DNC uses
content-based addressing and dynamic memory allocation
to handle write operations, content-based addressing and
temporary memory linkage to deal with read operations. The
DNC can choose how to allocate memory, store information,
and easily find data in memory. In this work, due to external
memory networks’ introduction, our algorithm has reasoning
capabilities, which is an important reason for the MCGN to
perform navigation under partial observation from UAV.

III. APPROACH

We focus on the heterogeneous unmanned system com-
posed of a UAV and a UGV (see Fig. 1). The UAV flies
at a constant height and is equipped with a top-down view
camera. The UGV has no environmental sensing device.
Thus it has to be assisted by the UAV for navigation.
To provide navigation strategies for such heterogeneous
unmanned systems in an unfamiliar environment, we propose
an algorithm whose architecture is shown in Fig. 2. The
algorithm’s inputs are parts of the environment observation
photographed by the camera equipped on the UAV, and the
outputs are discrete control commands of UAV and UGV,
including up, down, left, and right actions. Our algorithm
consists of two parts, GMGN and MCGN. For GMGN, the
inputs are RGB images captured by the camera, and the
outputs are grid maps represented by matrices. For MCGN,
the inputs are grid maps, and the outputs are discrete motion
control commands. In the following two subsections, these
two parts are described in detail, respectively.

A. Grid Map Generation Network

GMGN aims to transform RGB images into grid maps.
Since it’s difficult to directly convert 3-channels images
into 1-channel matrices, in GMGN, we first transform RGB
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Fig. 3. Structure of Grid Map Generation Network

images (image height, image width, channels) into 1-channel
semantic segmentation maps (image height, image width)
by using semantic segmentation network, and then reduce
the 1-channel semantic segmentation maps to grid maps
(matrix width, matrix height). The structure of GMGN is
given in Fig. 3.

In the semantic segmentation section, we use the fast and
lightweight ENet network [15], which is a real-time segmen-
tation network with considerable accuracy. The network is an
encoder-decoder structure, but it is not symmetrical. It uses a
larger encoder and a smaller decoder structure. Specifically,
as shown in Fig. 3, the initial stage is comprised of initial
blocks, and stages 1-5 are composed of bottleneck modules,
where stage 1-3 belong to the encoder and stage 4-5 belong
to the decoder.

We then design a Post Processing Network (PPN) to
transform the semantic segmentation maps into grid maps.
As shown in Fig. 4, grid map is a two-dimensional matrix,
also known as the partial observation matrix Op. The size
of Op is m× n, which represents the scene observed by
UAV’s camera. The starting point is represented as an orange
grid, and the target point is a green grid. Based on these,
a masked global observation matrix Og with the size of
M×N(M >m,N > n) can be generated, which reflects global
information. In this matrix Og, the unknown environment
(outside the camera’s FOV) is set to −1, while 0, 1, and 2
represent the passable parts, the obstacles, and the target in
the known environment, respectively. Note that a target in
the known (resp. unknown) environment is set to 2 (resp.
−1).

B. Motion Command Generation Network

In this subsection, we will first introduce the VIN module
and DNC module principles in brief, which are important
components in MCGN, and then analyze the network struc-
ture of MCGN in detail.

1) Value Iteration Network: Path planning is a sequential
decision problem, that can be regarded as a Markov Decision
Process (MDP). MDP is a 5-tuple model 〈S,A,P,R,γ〉, where
S is the masked global observation matrix and stands for a
set of states, A is discrete motion command and stands for
actions, P presents the conditional transition probabilities
between states, R means the reward function and γ is the
discount factor. Strategy π(a|s) determines the probability
of taking actions a under states s. The goal is to maximize
long-term returns. The value iteration method is a traditional
method to solve the MDP problem. The state value function
V (s) can be obtained by iteratively calculating the state-
action value function Q(s,a) of each state (Eq. (1)). By

(a) (b) (c)

(d) (e)

obstacle

unknown environment

passble part

starting point

target point

Fig. 4. Explanation of the grid map. (a) The global observation Oa ranges
from the starting point to the target point. (b) The partial observation matrix
Op when UAV at the starting point. (c) The masked global observation
matrix Og when UAV at the starting point. (d) The partial observation matrix
Op when the target point appears in UAV’s FOV. (e) The masked global
observation matrix Og when the target point appears in the UAV’s FOV.

iterating all possible actions in each state many times, we
can get the optimal strategy (Eq. (2)).

Qn(s,a) = R(s,a)+∑
s′

γP(s
′ |s,a)Vn(s

′
), (1)

where Vn+1(s) = max
a

Qn(s,a), ∀s

π
∗(a|s) = argmax

a
Q∗(s,a) (2)

We adopt a network called value iteration network (VIN)
module[16]. This structure has the same mathematical ex-
pression as the classical programming algorithm value iter-
ation mentioned above. In this network, value iteration is
expressed as a convolutional neural network (CNN), which
is differentiable. So the whole network can be trained using
standard backpropagation. This makes VIN module simple to
train using imitation learning (IL) or reinforcement learning
(RL) algorithms, and straightforward to integrate with NNs
for perception and control.

2) Differential Neural Computer: DNC is an exclusive
recurrent neural network (RNN) with external memory. It
uses vectors to store memory. Each row of the memory
matrix M ∈ RN×M corresponds to a unique memory. The
controller utilizes interface vector to control one write head
and multiple read heads to interact with external memory.
External memory matrix update as

Mt = Mt−1(E−wW
t eT

t )+wW
t vT

t (3)

where Mt is the memory matrix at time step t, E ∈ RN×M

is the identity matrix, eT
t ∈ RW is the erase vector, and

vT
t ∈ RW is the write vector. wW

t ∈ RN is the write weight
obtained through two addressing mechanisms, content-based
addressing and dynamic memory allocation. As shown in
Eq. (3), the external memory matrix is erased first and then
written, and then the memory matrix is updated.

The read operation is defined as a weighted average over
the content of the memory matrix. It produces a set of vectors
defined as read vectors as follows

rei
t = MT

t wread,i
t (4)

where rei
t is the read vector which will be appended to the

next time step of controller to provide access to memory,
wread,i

t is the read weight obtained through two addressing
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mechanisms, content-based addressing and temporal memory
linkage.

3) Motion Command Generation Network: Through
GMGN, the RGB images taken by the UAV are converted to
grid maps. The grid map is known as the partial observation
matrix Op. The masked global observation matrix Og can
be obtained through Op and the current UAV’s position.
Here, we will introduce how to plan the movement of a
heterogeneous unmanned system through Og and Op.

When planning starts, the actions of UAV and UGV are
synchronized, and the UGV remains in the center of the
UAV’s FOV. Assuming that the target point appears in the
UAV’s FOV at time step τ . At time step 0 ∼ τ , inspired by
the Memory Augmented Control Networks (MACN) [17],
we use VIN to learn motion planning and use DNC to track
and record import signs of environments. The combination
of VIN and DNC can determine the optimal strategy in
the global environment by collecting strategies calculated
in the partial observation space. After time step τ , UAV
keeps hovering, and UGV will get to the target point alone.
At this time step, for the heterogeneous unmanned system,
the camera’s observation can accurately model the current
environment. Therefore, it is possible to plan the motion by
VIN without resorting to DNC directly.

Ⅰ Ⅱ
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Fig. 5. Structure of Motion Command Generation Network

As shown in Fig. 5, the inputs of the MCGN are the
masked global observation matrices Og or the partial obser-
vation matrices Op, and the outputs are the discrete motion
commands of UAV and UGV. The whole network includes
ConvNet module, VIN module, Attention module, and DNC
module which is implemented as a collection of RNNCore
modules. The structure of ConvNet module is shown in
Tab. I. At time step 0, the initial reward map is designed
manually, where the value of the target point is set to 10
which represents the reward, and the other values are set
to 0. At time step 0 ∼ τ , the masked global observation
matrix and the initial reward map are utilized to form a multi-
dimensional matrix with the size of [M×N×2] as the input
of ConvNet module. ConvNet module outputs reward map
R and value map V (s), both of them are input into the VIN
module, after k times of iterations, the final value map is
obtained as the input of controller in DNC.

At each time step t, as shown in Fig. 5 (I), the input of
the controller is the masked global observation matrix Og,

TABLE I
STRUCTURE OF CONVNET

Type Filter size In channels Out channels Remarks

Conv 1 (3,3) 2 150 \
Pooling (1,1) 150 1 Reward map R
Conv 2 (3,3) 1 4 Action value function Q(s,a)

max \ \ \ Value map V (s)

the final value map V (s) generated by the VIN module, as
well as the read vectors rt−1 and control state generated at
time step t−1. The controller emits interface vector ξt and
output vector vt after calculation. First, the interface vector ξt
controls the access module update write head, then the write
head updates the memory matrix through erasing and writing
operations, after that, the read head is updated, finally, the
read head obtains the read vector rt at time step t based on
the new memory matrix. The read vector rt and output vector
vt are mapped to the output after linear transformation, that
is, discrete action values. action ∈ {0,1,2,3}, corresponding
to the four actions of up, down, left and right respectively.
rt is passed as new short-term memory to the next time
step t + 1. The DNC’s final output is obtained by linear
combination of read vector and output vector, similar to the
“Search of Associative Memory” model of long-term and
short-term memory in the human brain.

When the target appears in the FOV of the camera,
for the heterogeneous unmanned system, the perspective of
the camera can accurately model the current environment.
Therefore, the movement can be directly planned by VIN
without resorting to DNC. As shown in Fig. 5 (II), the input
of the algorithm is the partial observation matrix Op instead
of the masked global observation matrix Og. The partial
observation matrix is input into ConvNet module to generate
a reward map and a value map, and both of them are input
into a VIN module. After k times of iterations, the final value
map and the final reward map can be obtained. These two
maps can be added into the attention module, and finally,
a series of actions to the target point is obtained. Unlike
the above, at this time, the UAV keeps hovering, and the
commands are only used to control the movement of UGV.

IV. EXPERIMENTS AND RESULTS

A. Implementation details

1) Experimental Setup: To evaluate the effectiveness of
the proposed approach, we conducted experiments on the
platform HeROS [18]. Our experiments were conducted on
the following specifications: i5-9400F CPU, 16GB RAM,
and NVIDIA GeForce RTX 2060 GPU. The implementation
of neural networks has been carried out with Python and
Tensorflow library.

2) Grid Map Genetation Network: For each RGB image
captured by the UAV, its corresponding semantic segmenta-
tion map and grid map need to be labeled. When labeling
the former, we label obstacles as 1 and passable parts as 0
with the help of the LabelMe software. When labeling the
latter, obstacles are also labeled as 1 and passable parts are
labeled as 0 to obtain the grid map and saved in the .npy
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TABLE II
PARAMETERS OF MOTION COMMAND GENERATION NETWORK

Parameters Value

Learning rate 10e-5
Number of epochs for training 120
Number of episodes per epochs 200

Batch size 64
Number of iteration for planning (VIN) 30

Channels in Q layers (actions) 4
Channels in initial hidden layers 150

Size of LSTM hidden layers 256
Number of memory slots 32

Width of each memory slot 8
Number of memory read heads 4
Number of memory write heads 1

format. During training, ENet and PPN are trained separately.
In the first place, we train the ENet using RGB images and
semantic segmentation maps. In the second place, we use
the semantic segmentation maps obtained in the previous
step and the manually labeled grid maps to train the PPN.
After the two networks converge separately, we combine both
networks and train together to fine-tune the parameters.

3) Motion Command Generation Network: To accelerate
the training process, we adopt the imitation learning method,
learning from decision data provided by human experts. For
each Oa (as shown in Fig. 4(a)), a sequence of optimal
actions from the starting point to the target point is generated
by using the A* algorithm firstly. Combined with the current
position of the UAV, we retain the value of the observation
range and set the value outside the observation range to −1,
and then we can get the masked global observation matrix
Og at this time step (as shown in Fig. 4(c), (e)). Each Og
corresponds to an action, which is the optimal action under
current observation.

Since the network structure changes before and after time
step τ , we train MCGN-I and MCGN-II separately (as shown
in Fig. 6). When the two models have converged, we utilize
the two trained models in parallel. When the target point
doesn’t appear in the UAV’s FOV, we use model I. When the
target point appears, we use model II. The network parameter
design is shown in Tab. II.

B. Traditional Baselines

The traditional A* algorithm must know the global obser-
vation matrix Oa, only know the partial observation matrix
Op is unable to do the planning. In order to make the A*
algorithm can be applied in the partial observation environ-
ment proposed in this paper, we proposed two improved A*
algorithms. The two algorithms’ principles are omitted due
to length limit and can be found in an expanded version of
the paper [19].

C. Results and Analysis

1) Comparison with traditional baselines: In order to ver-
ify the advantages of MCGN, we selected the following maps
to ascertain the effectiveness of MCGN and the baseline
algorithms.

The experimental results are shown in Fig. 6, where the
light blue area represents the part which is outside the FOV

(a)

①
②

③

(b) (c)

Fig. 6. Comparison with baselines

of UAV at the initial moment, the green star represents the
starting point, the yellow star represents the target point and
the solid blue line represents the planned path. Fig. 6(a)
shows the path planned by MCGN, it can be seen that the
algorithm successfully avoids the “trap” area and finds the
globally optimal path. Fig. 6(b) shows the path planned by
Traditional baseline 1. In the initial view of UAV, the blue
dot is the position closest to the target point. Therefore,
under the current local map, the planned path is from the
starting point to the blue dot. When the UAV and UGV
reach the blue dot position, the target point appears in the
UAV’s FOV, and there is no road at the lower left. In order
to reach the target point, the UGV needs to turn back to the
starting point, and then go to the target point. Fig. (c) shows
the results of the Traditional baseline 2. This method fails
under the current map, which plans a circular decision of left
and right. The above experiments prove that the traditional
method doesn’t work well under the condition that the global
map is unknown.

2) comparison with MACN: Memory Augmented Control
Networks (MACN) is designed for planning problems in
partially observable environments[17], and our method is
an improvement based on MACN. In order to evaluate the
advantages of our approach compared to MACN, we take
MACN as the baseline and evaluate them. We designed three
tasks with different scales. Among them, Task1 and Task2
have the same global scale (the size of the masked global
observation matrix), but the observation scope (the size of
the partial observation matrix) is different. The observation
scope of Task2 and Task3 is uniform, but the global scales
are different. In our experimental design, the parameters are
summarized in Tab. III.

TABLE III
SIMULATOR PARAMETERS

Parameters Value

Global scale (M, N) of Task1 17×17
Observation range (m, n) of Task1 11×11

Global scale (M, N) of Task2 17×17
Observation range (m, n) of Task2 9×9

Global scale (M, N) of Task3 15×15
Observation range (m, n) of Task3 9×9

In Task1, Task2 and Task3, we added different numbers
and different sizes of obstacles in each scenario, where the
position of obstacles, starting point, and target point were
randomly set. Besides, we detected whether there is a feasible
path between the starting point and the target point, and
eliminated the scenario where there is no possible path. For
the three tasks, we conducted 400 experiments in each task,
of which 100 experiments were performed in the scenarios
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TABLE IV
RESULTS OF ACCURACY COMPARISON EXPERIMENTS

Task Method Obs 2 Obs 3 Obs 4 Obs 5

Task1
MACN 84/100 70/100 70/100 72/100
Ours 93/100 85/100 84/100 85/100

Task2
MACN 79/100 65/100 64/100 60/100
Ours 88/100 83/100 79/100 77/100

Task3
MACN 82/100 68/100 65/100 64/100
Ours 90/100 82/100 82/100 79/100

with 2, 3, 4, and 5 obstacles, respectively. The results are
summarized in Tab. IV.

In addition, we calculated the average time taken by
our proposed method. The GMGN took about 0.827s to
process a picture of 256pixels × 256pixels, and the MCGN
issued a motion control command in about 0.009s. Therefore,
our method meets the real-time requirements in practical
applications.

From Tab. IV we can see that for the three tasks with
different global scales and observation ranges, our method
improves the accuracy rate by about 14% compared with
MACN. Define the observation ratio as the observation range
divided by the global scale, we can get the observation ratio
of Task1 is 0.65, the observation ratio of Task2 is 0.53, and
the observation ratio of Task3 is 0.6. Through the comparison
of the data in Tab. IV, we can see that the larger the
observation ratio, the higher the accuracy of the task. It’s easy
to explain, when exploring in the unfamiliar environment, the
larger the scope of our surrounding environments, the easier
it is to plan the path.

Then we compared the scenario with different obstacles in
the same task. We can find that when the number of obstacles
is 2, the accuracy of both methods is higher. When the
number of obstacles exceeds 3, as the number of obstacles
increases, the accuracy of both methods is not significantly
reduced. Through inspection of the simulation environment,
we found that the reason is that when the number of obstacles
exceeds 3, the number of obstacles that can be seen by the
camera remains basically the same due to the limited field
of view, which leads to the above results.

Through the above analysis, one can conclude that our
method effectively improves the success rate and reduce the
situation of collision with obstacles compared with MACN.
In most scenarios, our proposed method can direct UGV to
reach the target point.

V. CONCLUSIONS
This paper has proposed a motion planning algorithm for

the heterogeneous unmanned system under partial obser-
vation of environment from UAV. The algorithm consists
of two parts. In the perception part, we have proposed
GMGN, which can identify obstacles and passable parts in
the pictures taken by UAVs. In the decision-making part,
MCGN has been proposed. By the addition of memory
mechanism, our methods can remember import landmarks
in the exploration process, to obtain planning capabilities
under partial observation from UAVs compared to similar
state-of-the-art approaches.

We evaluate our proposed algorithm by comparing it with
baseline algorithms. The results demonstrate that our method
can effectively plan the motion of heterogeneous unmanned
systems and achieve a relatively high success rate. Our future
work will focus on the further improvement of the accuracy
rate and utilizing a UAV to assist multiple UGVs for motion
planning.
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