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Abstract— With the increasing computing power, using data-
driven approaches to co-design a robot’s morphology and
controller has become a promising way. However, most existing
data-driven methods require training the controller for each
morphology to calculate fitness, which is time-consuming. In
contrast, the dual-network framework utilizes data collected
by individual networks under a specific morphology to train a
population network that provides a surrogate function for mor-
phology optimization. This approach replaces the traditional
evaluation of a diverse set of candidates, thereby speeding up
the training. Despite considerable results, the online training of
both networks impedes their performance. To address this issue,
we propose a concurrent network framework that combines
online and offline reinforcement learning (RL) methods. By
leveraging the behavior cloning term in a flexible manner,
we achieve an effective combination of both networks. We
conducted multiple sets of comparative experiments in the
simulator and found that the proposed method effectively ad-
dresses issues present in the dual-network framework, leading
to overall algorithmic performance improvement. Furthermore,
we validated the algorithm on a real robot, demonstrating its
feasibility in a practical application.

I. INTRODUCTION

A robot’s performance depends on its mechanical structure
as well as its control proficiency, which are inherently interre-
lated. While robot locomotion control has achieved remark-
able success, the design of a robot’s structure still heavily
relies on the experience of engineers. Recently, analytic
dynamics model-based approaches [1]–[4] have emerged to
address the co-design problem of robots. However, such
methods require the establishment of dynamic models and
the implementation of equality or inequality constraints,
which necessitates a significant amount of tedious human
engineering and expert knowledge.

With the increased computing power, numerous data-
driven algorithms [5]–[9] have emerged to address co-design
problems. Most of these algorithms [5]–[8] adopt bi-level
approaches. The lower level trains policies under specific
morphology candidates from scratch to calculate fitness,
while the upper level selects a new morphology based on
fitness. Such processes require significant time investments.
Improving optimization efficiency is a worthwhile pursuit.
The dual-network architecture proposed by [9] offers a
solution that learns a surrogate function conditioned on mor-
phology parameters to evaluate candidate fitness, avoiding
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Fig. 1. Agents under different morphological parameters, the upper row
is HalfCheetah, and the lower row is Ant.

the need to train each candidate from scratch. Specifically,
it includes an individual network and a population network.
The former interacts with the environment under a specific
morphology, while the latter integrates interactive data from
various morphologies to provide goals for morphology opti-
mization.

While the dual-network architecture has achieved notable
success, it has several severe limitations. Firstly, as the
population network is updated without direct interaction with
the environment, exploration errors may arise in such an
offline setting, leading to an inaccurate estimation of fitness
during morphology optimization. Secondly, similar to the
offline-to-online setting [10]–[12], the population network’s
parameters can be used to initialize the individual network.
But such procedures lead to performance collapses caused
by sudden state-action distribution shifts. To address these is-
sues, we propose the concurrent-network architecture, which
emphasizes the effective combination of offline and online
networks. Specifically, we use a policy-constraint method to
train the population network offline, which helps alleviate
the exploration error and ensures the general policy learned
by the population network is more reliable. Besides, we use
an adaptive behavior cloning term to train the individual
network online, which mitigates the influence of distribution
shifts in the early stages of training and ensures the agent’s
exploration in the later stages. To verify the effectiveness
of our proposed methods, we perform two simulation tasks
and one physical task. In summary, our contributions are as
follows:

• Aiming at the task that can be modeled as bi-level
optimization problems, such as the co-design of robots,
we introduced the concurrent network that integrates
individual network and population network under the
purview of Bayesian optimization. The individual net-
work is trained online to solve the lower-level optimiza-
tion task, while the population network is trained offline
to provide the objective of upper-level optimization. By
combining the offline and online training approaches,
we are able to leverage the data in the most efficient
manner.
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• We conduct simulation experiments on two typical
legged robot locomotion tasks to evaluate the pro-
posed method. The results demonstrate that the method
can significantly reduce exploration errors and mitigate
state-action distribution shifts, leading to noticeable
improvements in optimization performance.

• We construct a detachable four-legged robot and con-
duct hardware experiments to verify the effectiveness of
our proposed method.

II. RELATED WORKS

A. Co-design for robots

The co-optimization of morphology and policy can be
classified into two categories: analytic dynamics model-
based approaches and data-driven approaches. In the first
category of approaches [1]–[4], [1] pointed out that the
design and motion parameters of robots need to satisfy var-
ious equality and inequality constraints, which can form an
implicitly-defined manifold. It applies the implicit function
theorem to derive the relationships among the design and
motion parameters. In [4], the design and control parameters
are selected by a genetic optimizer and used to establish the
dynamic and friction models. The trajectory optimization is
then performed, and the final costs serve as the optimized
objective of the genetic algorithm. However, among these
approaches, the establishment of motion equations and the
design of equality and inequality constraints require careful
human engineering, and the constraints may vary for differ-
ent types of robots. In the data-driven approaches, the control
policy and morphology parameters are learned in a trial-and-
error manner, which makes them independent of the robot’s
dynamics. Based on whether the topology changes, these
approaches can be divided into two categories: morphology-
changing and unchanging approaches. Morphology-changing
methods [6]–[8], [13] change the robot’s topology, whereas
unchanging methods [5], [9], [14]–[16] do not. A rep-
resentative example of a morphology-changing approach
is [8], which collects experience via a distribution and
asynchronous manner and uses the learned average final
rewards as the fitness for tournament-based evolution. For
unchanging morphology methods, [5] maintain a distribution
over designs and use the reinforcement learning algorithm to
optimize a control policy to maximize the expected reward
over the design distribution. Furthermore, several works
have used differential simulators to perform co-design, such
as [14], [15] for soft robot tasks and [16] for contact-
rich manipulation tasks. The topology-changing methods are
not feasible to deploy in the physical environment because
the optimized robot structures are often asymmetric, and
the motor position layout may not be reasonable. In this
paper, we focus on co-design unchanging topology problems,
propose a novel framework, and construct a four-legged robot
to perform hardware validation.

B. Offline reinforcement learning

The goal of offline reinforcement learning (RL) is to
derive better strategies solely from static datasets. The main

challenge of offline RL is exploration error, which arises
from learned policies that may produce out-of-distribution
actions [17], [18]. To reduce exploration error, previous
works can be mainly divided into three categories. The
first category is policy-constraint methods, which aim to
restrict the learned policy to only access data similar to
interaction tuples in the datasets. This category can be further
divided into explicit [17], [19], [20], implicit [10], [21], [22],
and importance sampling [23]–[25] methods. The second
category is conservative methods [26]–[28], with CQL [26]
and Fisher-BRC [27] being state-of-the-art approaches in this
category. All of the aforementioned approaches are model-
free offline reinforcement learning methods. In addition,
there is a type of model-based method, where the basic
principle is to generate data through the model and penalize
generated data that deviates from the dataset by measuring
the uncertainty of the model prediction. Representative meth-
ods in this category include [29] and [30].

III. PRELIMINARIES

A. Problem formulation

Co-design for robots can be formulated as a bi-level
optimization problem:

max
ξ∈Ξ

F (π∗(ξ), ξ)

s.t. π∗(ξ) = arg max
π∈Π

J(π, ξ)
(1)

where π is the control policy, ξ is the morphology parame-
ters. F (·) and J(·) are objective functions of the upper and
lower layers, respectively. The lower-level optimization is
performed first to obtain optimized policies under pre-defined
morphology parameters. Then, the upper-level optimization
is performed to obtain the optimized morphology among
the morphology parameter search space based on the fitness
acquired by the optimized policies. It is worth noting that the
bi-level framework can be utilized not only for addressing
the co-design problem of robots but also for adapting the
parameter distribution of the simulator to tackle the sim-
to-real problem, as demonstrated in [31] and [32]. The
interaction between the robot and its environment can be
modeled as an extension of the Markov Decision Process
(MDP) conditioned by ξ. This can be represented by the
tuple 〈S,A, P,R, γ〉, where S and A represent the state and
action space, P and R denote the dynamics and reward
function, and γ ∈ [0, 1) indicates the discount factor. At
each time step t, an agent selects an action at ∈ A under
the state st ∈ S according to the policy π(·|st, ξ) and
receives a reward rt = r(st, at, ξ). The environment then
transitions to a new state st+1 following the transition model
p(st+1|st, at, ξ). The objective of lower-level optimization is
to optimize the control policy to maximize the expectation
of the accumulative rewards conditioned on a specific mor-
phology parameter ξ̄. The evaluation is depicted as follows:

J(π, ξ̄) =

[
H∑
t=0

γtr(st, at, ξ̄)

∣∣∣∣∣ at ∼ π(·|st, ξ̄)

]
(2)

where H refers to the horizon. In (2), ξ is fixed and π is to
be optimized. Similarly, the objective of the upper-level is to
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Fig. 2. Framework of the proposed method. The training process can be summarized as follows: (1). Online training is performed under a pre-designed
morphology ξ1, as illustrated in Online RL Iteration 1. (2). The interaction tuples ( st, at, st+1, rt| ξ1) obtained during the online training are used to
train the population network to provide a surrogate function for Bayesian optimization. The optimized morphology ξ2 is then obtained through Bayesian
optimization, as depicted in Offline RL. (3). ξ2 obtained by (2) is utilized as the new morphology parameters, and the population network’s parameters
are used to initialize the individual network’s parameters in Online RL Iteration 2. Online training is then performed again under ξ2. (4). The interaction
tuples ( st, at, st+1, rt| ξ2) obtained during this iteration are also stored in the replay buffer Dpop. Then, the interaction tuples obtained from both ξ1
and ξ2 are used to train the population network to obtain the new configuration ξ3, and the process is repeated.

find the optimized morphology parameter ξ∗ that maximizes
the expectation of the cumulative rewards given the optimal
policy π∗(ξ). The evaluation function is described as follows:

F (π∗(ξ), ξ) = E

[
H∑
t=0

γtr(st, at, ξ)

∣∣∣∣∣ at ∼ π∗(·|st, ξ)
]

(3)

In (3), π is fixed, and ξ is the parameter to be optimized.

B. The dual-network framework

Obtaining π∗(ξ) in equation (3) is time-consuming. To
tackle this issue, [9] introduced the dual-network framework.
This framework employs two identical networks: the indi-
vidual network and the population network. The individual
network interacts with the environment, and the interaction
tuples are stored in the replay buffers Dind and Dpop.
During each iteration of morphology optimization, Dind is
cleared, and Dpop retains all interaction tuples from various
morphologies. This enables the population network to gen-
eralize better across different morphologies. When presented
with new morphology parameters, the population network
estimates Q-values as the surrogate function for morphology
optimization. Specifically, the Q-value of the initial state s0

is utilized. Thus, the objective of morphology optimization,
as expressed in equation (3), can be rephrased as follows:
ξ∗ ≈ arg max

ξ∈Ξ
E[Qpop(s0, a0, ξ)|a0 ∼ πpop(·|s0, ξ)] (4)

In this way, the problem of finding optimal morphological
parameters can be transformed into training networks that
can predict the Q-values of different morphology for given
initial states. It is worth noting that using a single network is
infeasible to achieve both generalizations to provide policies
for upper-level optimization and optimality under a specific
morphology to ensure the quality of interaction tuples.

IV. METHOD

A. Exploration error and distribution shift

In the dual-network framework [9], it is necessary to per-
form value estimation when training the population network,

as shown below:
Qpop(st, at, ξ)← rt + γQpop(st+1, at+1, ξ)

at+1 ∼ πpop(·|st+1, ξ)
(5)

The policy function πpop obtains at+1 based on st+1 and
ξ, which come from interaction tuple collected by the indi-
vidual network. Subsequently, the Q function Qpop provides
Qpop(st+1, at+1, ξ), and the target Q-value Qpop(st, at, ξ)
is calculated. If the population network interacts with the
environment itself, when Qpop overestimates the state-action
pair, πpop may collect data in the uncertainty region, and the
erroneous value estimate can be corrected. However, since
the population network is updated by data from the static
dataset, at+1 selected by πpop may be suboptimal, and the
distribution of (st+1, at+1, ξ) may differ significantly from
that of the replay buffer, leading to an incorrect estimation
of the target Q-value and the failure of the Q-learning-
based algorithm. This process is known as exploration error.
Therefore, the Q function Qpop cannot serve as a reliable
surrogate function for morphology optimization, which is
critical for the dual-network architecture proposed in [9].

In the co-design task with unchanged topology, the robot
morphology parameters remain in a feasible region, allowing
the population network to provide a pre-trained feasible
policy for the individual network, which can be considered
an offline-to-online problem [10]–[12]. Nevertheless, as the
morphology parameters are modified during optimization, the
individual network is likely to encounter unfamiliar state-
action regions. This results in a sudden distribution shift
between offline and online data, which can lead to inaccurate
Q-value estimates [10]. As a result, the policy may be
updated in an arbitrary direction, which could compromise
the well-trained initial policy from the population network.
B. Policy-constraint method for offline RL

To handle the exploration error problem, we utilize a
policy-constraint method TD3BC [20] to train the popu-
lation network. Although simple, it can still achieve or
exceed other complex state-of-the-art offline RL methods

7489

Authorized licensed use limited to: Zhejiang University. Downloaded on July 09,2024 at 04:38:49 UTC from IEEE Xplore.  Restrictions apply. 



[26], [27]. Specifically, when calculating the Actor’s loss
function, we add the behavior cloning term to promote the
actions obtained by the policy to approach the actions in
the dataset, thereby reducing the error estimation of the Q-
value. The Actor’s loss function is as follows (In practical
implementation, we concatenate ξ and state st together. For
notational clarity, we omit ξ in the remainder of the paper):

Jπ(φ
′) = −E(st,at)∼Dpop [

Qθ′(st, πφ′(st))
1
N

∑
(si,ai)

|Qθ′(si, ai)|
−

α(πφ′(st)− at)2]
(6)

where θ′ and φ′ represent the network parameters of Critic
and Actor of the population network, respectively. To balance
the values of the two terms in (6), the Q-value is normalized,
and α is added to control the weights of the behavior cloning
term, we use α = 0.4 in our experiments.
C. Adaptive behavior cloning term for offline-to-online

When training the population (offline) network, we use α
to balance the trade-off between the reinforcement learning
(RL) target and the behavior cloning term. This approach
has inspired us to dynamically adjust α during individual
network training. Intuitively, the α should be high when
the policy inherits from the population network is already
near-optimal and α should be low when the policy has to
be significantly improved. To achieve this, we employ a
control mechanism similar to a proportional-derivative (PD)
controller [12]. To separate from that of the population
network, we assign the weight β to the behavior cloning
term of the individual network, and the Actor’s loss function
is presented below:

Jπ(φ) = −E(st,at)∼Dind
[

Qθ(st, πφ(st))
1
N

∑
(si,ai)

|Qθ(si, ai)|

−β(πφ(st)− at)2]
(7)

where θ and φ represent the network parameters of Critic and
Actor of the individual network, respectively. More specifi-
cally, the value of β is made up of two components. The
proportional component is determined by the discrepancy
between the current episodic return Rcurrent and the target
return Rtarget, while the derivative component is determined
by the difference in returns between the current episode
Rcurrent and the previous episode Rlast. The formula can
be expressed as follows:

∆β = Kp(Rcurrent−Rtarget)+Kd·max(0, Rlast−Rcurrent)
(8)

where Kp and Kd are weights of two terms, Rtarget is a
hyperparameter that needs to be set manually according to
different tasks.

D. Bayesian optimization for morphology selection

Among the concurrent-network, the population network
is trained to synthesize data from different morphologies.
Hence we deem it can fit the Q function when meeting a
new morphology configuration.

F (π∗(ξ), ξ) ≈ F (πpop, ξ)

= E[Qpop(s0, a0, ξ)|a0 ∼ πpop(·|s0, ξ)]
(9)

As the morphology parameters we used are in continuous
space, we employ a Gaussian Process to model (9). This
model, denoted as M : ξ 7→ F (πpop, ξ), is trained and uti-
lized to calculate the acquisition function ψi(ξ). Specifically,
we adopt the Gaussian Process Upper Confidence Bound
(GP-UCB) [33] technique in our method. During each round
of optimization, the optimization results are as follows:

ξi = arg max
ξ∈Ξ

ψi(ξ) = arg max
ξ∈Ξ

µi−1(ξ) + κ
1
2σi−1(ξ) (10)

where µi−1(ξ) and σ2
i−1(ξ) are the mean and variance of

model M respectively. κ is a hyperparameter that controls
the balance between exploration and exploitation. The sub-
script i indicates the number of times Bayesian optimization
is conducted during a single morphology optimization pro-
cess. In summary, the algorithm framework is presented in
Fig.2, and the corresponding pseudo-code is as follows.

Algorithm 1 Bayesian Optimization Augmented by the
Concurrent-Network

1: Initialize replay buffers: Dpop, Dind, Dinit;
2: for each iteration do
3: Initialize and empty Dind;
4: ξ = ξnew;
5: for every training episode do
6: for t in episode length T do
7: Interact with the environment: at ∼ πind(st);
8: Get next state st+1 and reward rt;
9: Store (st, at, rt, st+1) to Dpop and Dind;

10: Store initial states s0 to Dinit;
11: end for
12: Set Rlast = Rcurrent and Rcurrent =

∑T
t=0 rt;

13: Update weight β according to E.q.(8);
14: for n in update numbers do
15: Train population network with random batches

from Dpop according to E.q.(6);
16: Train individual network with random batches

from Dind according to E.q.(7);
17: end for
18: end for
19: for i in BO update numbers do
20: Find ξi by optimizing acquisition function over the

GP according to E.q.(10);
21: Sample initial states s0 from Dinit;
22: Calculate the objective value F (πpop, ξi) according

to E.q.(9);
23: Augment D1:i

BO = {D1:i−1
BO , (ξi, F (πpop, ξi))} and

update the GP;
24: end for
25: ξnew = arg max

i
F (πpop, ξi)

26: end for

V. EXPERIMENTS

In this section, we design several experiments to answer
the following questions:
• Does the policy-constraint method mitigate the explo-

ration error resulting from the population network’s
lack of interaction with the environment?
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Fig. 3. Policy-constraint method analysis results. The x-axis represents the low-level episode, while the y-axis shows the accumulated rewards of that
episode. We plot the mean and standard deviation across three runs.

• Does introducing the adaptive behavior cloning term
alleviate the performance degradation caused by the
sudden state-action distribution shift when initializing
individual networks with parameters from population
network?

• Does the proposed method exhibit a significant improve-
ment in optimization performance when compared to
the original dual-network method [9]?

• Do the optimization results remain valid when tested in
physical experiments?

A. Legged robot tasks in Simulation

Setup: We investigate the performance of our proposed
method on two legged-robot tasks: HalfCheetah and Ant.
The former is a 2D motion task, while the latter is a 3D
task. We modify the length of the robots’ legs by changing
the corresponding XML files. The training is conducted on
an NVIDIA GeForce GTX 2080ti GPU, with the number of
epochs set to 300 to balance efficiency and performance.

Policy-constraint method analysis: In this part, we de-
sign comparative experiments to answer the first question.
Specifically, we manually configure four sets of morpholog-
ical parameters (HalfCheetah 1-4, Ant 1-4 in Fig.1). The
population network adopts three distinct implementations, as
described below:
• Population-TD3BC. The proposed method, in which

the population network is trained by TD3BC [20].
• Population-BCQ. Adopots another offline RL method

BCQ [17] to train the population network. Specifically,
a generative model is utilized to generate actions that
are expected within the distribution range of actions in
the replay buffer.

• Population-TD3. Train the population network with the
TD3 [34] method, which is without offline settings.

The rewards obtained by the individual network and three
types of population networks are depicted in Fig.3. To ensure
fairness, the individual network is trained using the TD3
algorithm [34] and its parameters are not initialized by the
population network anymore. For HalfCheetah-1 and Ant-
1, both the individual network and population networks are
trained using the same data (as only the data under the
first group are utilized at the beginning), and the individual

network achieves the highest rewards, indicating the presence
of exploration errors problem. By comparing the subsequent
groups, it is found that the rewards of Population-TD3BC
gradually converge towards those of the individual network
and even surpass them during training. The rewards of
Population-BCQ are lower than those of Population-TD3,
possibly due to the introduction of additional generative
networks that could result in a training slowdown. These ex-
periments demonstrate that the proposed method effectively
mitigates the exploration error problem in the offline setting,
enabling the population network to provide more reliable
estimations for upper-layer morphology optimization.

Adaptive behavior cloning term analysis: We conduct
four comparative experiments to answer the second question.

• No Copy. Initialize the individual network with random
parameters.

• Direct Copy. Copy the parameters of the population
network directly to the individual network.

• Fixed Term. Fix β in (7) to reduce the performance
drop caused by the distribution shift.

• Adaptive Term. The proposed method, β is adjusted
dynamically as the training progresses.

The results are presented in Fig.4. We use five groups of
morphological parameters (HalfCheetah1-5, Ant1-5 in Fig.
1). The training starts with the first group and ends with the
fifth group. Since there are no parameters transmitted in the
first group, we exclude its results. From Fig. 4, we observe
that the initial rewards of the four methods are similar in
the second group. As training progresses, it is evident that
No Copy has the lowest rewards among the initial rewards.
Due to the distribution shift, Direct Copy’s initial rewards
are neither high. The initial rewards of Adaptive Term and
Fixed Term are relatively high, indicating that these two
methods can alleviate the performance drop caused by the
distribution shift. However, as the fixed behavior cloning
term limits the agents’ exploration, the rewards of the Fixed
Term at the end of the epoch are not as high as those of
the proposed method. The above experiments demonstrate
that the proposed method can reduce the initial performance
drop while enabling the agent to maintain a high degree of
exploration, resulting in higher rewards than other methods.
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Fig. 4. Adaptive behavior cloning term analysis results. The x-axis represents the low-level episode, while the y-axis shows the accumulated rewards for
that episode. We plot the mean and standard deviation across three runs.

It is worth noting that although the parameters of Direct
Copy, Fixed Term, and Adaptive Term are copied from the
same population network, the curves in Fig.4 are obtained
from the evaluation stage (after the training stage), and the
initial network parameters change after the training stage.
Therefore, the initial rewards may not have the same values,
as reported in other offline-to-online works [11], [12].

Morphology optimization results: We compare the mor-
phology optimization performance of the proposed method
to that of four baselines. To facilitate analysis, we include
the morphology optimization results of the four-legged robot
in the simulation environment in this section.

• Coadapt SP. The original implementation of the dual-
network framework, in which both the individual net-
work and population network are trained by the online
RL algorithm SAC [35], and the morphology is opti-
mized by particle swarm optimization (PSO) method.

• Coadapt TP. Replaces the original SAC algorithm with
the TD3 algorithm. (By adjusting the hyperparameters,
we want to ensure that the results of Coadapt SP can
be replicated.)

• Coadapt TB. Replace PSO in Coadapt TP with
Bayesian optimization.

• Random Sampling. Sample designs uniformly at ran-
dom within the parameter ranges.

The cumulative rewards under optimized morphology with
the corresponding controller are shown in Tab.I, where the
symbol “#” represents morphology optimization iterations,
and the p-values of each two methods are placed between
the two rows. We conduct independent T-tests between Coad-
apt SP and Coadapt TP for the three tasks, and all p-values
are higher than the threshold of 0.05, indicating that by
selecting hyperparameters, we ensure that the results are in-
dependent of the algorithm choice. Additionally, we perform
independent T-tests between Coadapt TP and Coadapt TB
for the three tasks. The p-values for the Four-legged robot
and Halfcheetah are less than 0.05, while that of the Ant is
greater than 0.05. Moreover, all mean values of Coadapt TB
are greater than those of Coadapt TP. Thus, we can conclude
that Bayesian optimization is more suitable for our task
most of the time. The p-values between Coadapt TB and the

Proposed method are all less than the threshold, indicating
that the introduction of the concurrent-network architecture
is indeed effective in the co-design task. Furthermore, the
rewards of the Proposed method have a relatively steady
upward trend during the optimization process, demonstrating
the effectiveness of the proposed improvements compared
to other baselines. As the lower bound of optimization, the
Random Sampling method has the lowest rewards, which is
in line with our expectations.

B. Legged robot task in real world

In this section, we examine the feasibility of the proposed
method in the real world by utilizing a four-legged robot. At
the lower level, we combine RL with Central Pattern Gen-
erator (CPG) [36], [37], and define the action of RL as the
phase difference of CPG to train gaits. Initially, a simulation
model identical to the physical robot is constructed, and the
proposed algorithm is then implemented in the simulator.

The optimization results of the simulation are displayed
in Tab.I, demonstrating similar performance to that of
HalfCheetah and Ant tasks. The results of the gait (policy)
optimization are presented in Fig.5. We compare the trained
gait with three classical gaits (walk, trot, and pace). In each
row of Fig.5, eight instances are recorded from left to right,
corresponding to the first to eighth seconds when the robot
starts to move. It is apparent that the fastest gait is the trained
one, which affirms the efficacy of policy optimization.

The results of the morphology optimization are depicted
in Fig.6. We adopt the optimal gait for the original and
optimized morphology configurations and capture the posi-
tions reached by each robot during the same time interval
(approximately 0.6s). It is evident that the robot with the
optimized morphology configuration reached the end within
the allotted time, whereas the robot with the initial mor-
phology configuration only reached position 3. The findings
demonstrate that the optimized morphology configuration
can indeed enhance the robot’s motion performance. Addi-
tionally, we select two optimized morphology parameters -
front leg length, and rear leg length, as the x-axis and y-
axis, respectively, and plot them in Fig.7. Upon analyzing it,
we observe that all optimized points remain in the upper left
corner, suggesting that longer rear legs (i.e., a forward center
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TABLE I
MORPHOLOGY OPTIMIZATION RESULTS

Environment Method #2 #4 #6 #8 #10 #12 #14 #16 #18 #20 Mean p-value

HalfCheetah

Coadapt SP 5924.76
±374.5

5655.03
±644.03

5812.25
±1260.22

7015.14
±339.66

6728.55
±172.12

7170.83
±107.02

7287.99
±139.61

7369.74
±30.23

7626.74
±419.68

7614.88
±192.26 6820.6

0.1968
Coadapt TP 7178.99

±629.97
7129.19
±706.58

7436.12
±433.62

7433.26
±322.11

6778.18
±103.72

6910.45
±442.8

7347.12
±372.43

7285.93
±44.24

6977.98
±353.95

7071.89
±414.43 7154.92

6.1399× 10−4

Coadapt TB 6930.2
±394.19

7738.43
±960.86

8122.24
±614.25

8235.96
±343.09

8021.7
±257.36

7980.29
±58.02

7676.38
±142.35

7433.61
±207.37

7681.02
±422.12

7545.66
±131.21 7736.55

2.0961× 10−3

Proposed method 7144.15
±227.66

7524.32
±261.51

8341.74
±405.17

9129.20
±433.11

9133.28
±385.74

9231.53
±517.56

9294.37
±521.32

9373.68
±420.81

9115.31
±495.18

9127.19
±484.34 8741.48

6.5502× 10−12

Random Sampling 4238.71
±369.64

4838.95
±190.70

5100.78
±1062.57

4148.00
±660.25

4400.39
±101.54

4567.07
±584.55

4585.07
±66.55

4458.30
±1190.42

4504.45
±722.85

4756.85
±1027.57 4559.86

Ant

Coadapt SP 3148.73
±319.88

3116.11
±528.07

3810.01
±237.98

4178.09
±356.03

4170.36
±347.52

4400.92
±365.0

4249.47
±405.0

3933.58
±259.84

3713.71
±225.22

2938.52
±679.30 3765.95

0.5982
Coadapt TP 3507.22

±238.45
3678.96
±227.16

3761.81
±287.83

3565.20
±225.75

3914.69
±330.73

4165.95
±202.42

4018.89
±316.82

4144.58
±180.11

4033.96
±282.52

3844.03
±175.74 3863.53

0.8766
Coadapt TB 3243.30

±347.53
3741.11
±276.01

4046.61
±218.76

3964.59
±44.86

4260.58
±289.96

4082.87
±321.40

4108.96
±353.13

3883.07
±381.47

3905.95
±463.52

3585.50
±358.13 3882.25

1.2397× 10−6

Proposed method 4200.89
±429.03

4496.12
±116.18

4675.72
±226.38

4733.33
±318.72

4984.87
±322.91

4846.29
±271.03

4936.87
±195.32

5057.18
±51.42

5001.50
±185.93

5094.02
±163.47 4802.68

6.5943× 10−11

Random Sampling 2832.19
±193.83

2349.64
±201.47

2972.70
±193.05

3003.18
±51.14

3368.03
±240.22

3322.97
±175.37

3342.69
±37.40

2810.71
±137.81

2871.90
±173.53

3089.62
±222.96 2996.36

Four-legged
robot

Coadapt SP 5387.32
±1190.59

6191.51
±708.47

6101.63
±544.73

6527.56
±478.78

6747.27
±673.71

6964.32
±212.86

6292.54
±543.68

6116.06
±501.15

6162.80
±624.79

4808.85
±2522.27 6129.98

0.5135
Coadapt TP 6097.78

±367.85
6627.54
±138.04

6172.61
±862.58

6074.53
±1162.6

6545.82
±487.69

6237.02
±722.41

6492.50
±464.20

5827.08
±1223.99

6184.13
±932.55

6470.44
±415.83 6272.94

1.8359× 10−3

Coadapt TB 6461.69
±190.38

6572.23
±434.52

6452.36
±234.14

6669.88
±330.47

6640.23
±380.55

6337.23
±263.05

6682.14
±395.27

6872.21
±329.48

6772.9
±218.83

6994.41
±208.39 6645.53

3.0324× 10−10

Proposed method 7496.97
±549.98

7841.40
±332.96

8055.03
±660.95

8103.69
±398.92

8103.93
±155.72

8264.59
±318.35

8396.84
±88.05

8525.23
±252.80

8273.15
±163.17

8640.00
±169.70 8170.09

3.7904× 10−11

Random sampling 3303.81
±1885.33

4109.96
±2447.13

2247.02
±589.59

4334.36
±2581.22

4808.80
±2136.08

2795.10
±1872.26

4048.07
±1153.41

2440.10
±1668.91

4390.83
±1777.40

4680.92
±2524.79 3715.90
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Fig. 5. The gait optimization results, with the name of the gait are displayed on the left.
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Fig. 6. The morphology optimization results. The first row displays the optimized morphology, while the second row shows the original morphology.
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Fig. 7. The morphology optimization result, the colors of points represent
the iterations of morphology optimization.

of mass) will enable the robot to run faster. This finding
is also consistent with our prior knowledge. Both outcomes
confirm the effectiveness of the proposed method.

VI. CONCLUSIONS

In this paper, we propose the concurrent network, a
simple yet effective method to solve problems that can
be modeled as bi-level optimization, such as policy and

morphology co-design of robots. In which the population
network is trained offline to solve the upper-level task, and
the individual network is trained online to solve the lower-
level task. By leveraging the behavior cloning term flexibly,
an effective combination of both networks is achieved. We
validate the proposed method through extensive simulation
and real-world experiments, showing its superiority over
baseline algorithms. Furthermore, the proposed method can
optimize not only continuous but also discrete variables by
replacing Bayesian optimization based on Gaussian Process
with Bayesian optimization based on Random Forest, without
changing the network architecture. The current limitation
is that the proposed method has only been verified on an
open-loop control system of a physical robot with a simple
structure. In future work, we will continue to optimize the
physical robot and install some sensors to form a closed-loop
control system to adapt to the changing environment, such
as locomotion in the presence of uneven terrain, obstacle,
variations in friction, etc.
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D. Rus, and W. Matusik, “Robogrammar: graph grammar for terrain-
optimized robot design,” ACM Transactions on Graphics (TOG),
vol. 39, no. 6, pp. 1–16, 2020.

[14] Y. Hu, J. Liu, A. Spielberg, J. B. Tenenbaum, W. T. Freeman, J. Wu,
D. Rus, and W. Matusik, “Chainqueen: A real-time differentiable
physical simulator for soft robotics,” in 2019 International conference
on robotics and automation (ICRA). IEEE, 2019, pp. 6265–6271.

[15] P. Ma, T. Du, J. Z. Zhang, K. Wu, A. Spielberg, R. K. Katzschmann,
and W. Matusik, “Diffaqua: A differentiable computational design
pipeline for soft underwater swimmers with shape interpolation,” ACM
Transactions on Graphics (TOG), vol. 40, no. 4, pp. 1–14, 2021.

[16] J. Xu, T. Chen, L. Zlokapa, M. Foshey, W. Matusik, S. Sueda, and
P. Agrawal, “An end-to-end differentiable framework for contact-aware
robot design,” arXiv preprint arXiv:2107.07501, 2021.

[17] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement
learning without exploration,” in International Conference on Machine
Learning. PMLR, 2019, pp. 2052–2062.

[18] A. Kumar, J. Hong, A. Singh, and S. Levine, “When should we prefer
offline reinforcement learning over behavioral cloning?” arXiv preprint
arXiv:2204.05618, 2022.

[19] A. Kumar, J. Fu, M. Soh, G. Tucker, and S. Levine, “Stabilizing
off-policy q-learning via bootstrapping error reduction,” Advances in
Neural Information Processing Systems, vol. 32, 2019.

[20] S. Fujimoto and S. S. Gu, “A minimalist approach to offline reinforce-
ment learning,” Advances in Neural Information Processing Systems,
vol. 34, 2021.

[21] N. Y. Siegel, J. T. Springenberg, F. Berkenkamp, A. Abdolmaleki,
M. Neunert, T. Lampe, R. Hafner, N. Heess, and M. Riedmiller,
“Keep doing what worked: Behavioral modelling priors for offline
reinforcement learning,” arXiv preprint arXiv:2002.08396, 2020.

[22] X. B. Peng, A. Kumar, G. Zhang, and S. Levine, “Advantage-weighted
regression: Simple and scalable off-policy reinforcement learning,”
arXiv preprint arXiv:1910.00177, 2019.

[23] Y. Liu, A. Swaminathan, A. Agarwal, and E. Brunskill, “Off-policy
policy gradient with state distribution correction,” arXiv preprint
arXiv:1904.08473, 2019.

[24] A. Swaminathan and T. Joachims, “Batch learning from logged bandit
feedback through counterfactual risk minimization,” The Journal of
Machine Learning Research, vol. 16, no. 1, pp. 1731–1755, 2015.

[25] O. Nachum, B. Dai, I. Kostrikov, Y. Chow, L. Li, and D. Schuurmans,
“Algaedice: Policy gradient from arbitrary experience,” arXiv preprint
arXiv:1912.02074, 2019.

[26] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-
learning for offline reinforcement learning,” Advances in Neural In-
formation Processing Systems, vol. 33, pp. 1179–1191, 2020.

[27] I. Kostrikov, R. Fergus, J. Tompson, and O. Nachum, “Offline re-
inforcement learning with fisher divergence critic regularization,” in
International Conference on Machine Learning. PMLR, 2021, pp.
5774–5783.

[28] T. Yu, A. Kumar, R. Rafailov, A. Rajeswaran, S. Levine, and C. Finn,
“Combo: Conservative offline model-based policy optimization,” Ad-
vances in Neural Information Processing Systems, vol. 34, 2021.

[29] R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims, “Morel:
Model-based offline reinforcement learning,” Advances in neural in-
formation processing systems, vol. 33, pp. 21 810–21 823, 2020.

[30] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Y. Zou, S. Levine, C. Finn, and
T. Ma, “Mopo: Model-based offline policy optimization,” Advances in
Neural Information Processing Systems, vol. 33, pp. 14 129–14 142,
2020.

[31] F. Muratore, C. Eilers, M. Gienger, and J. Peters, “Data-efficient
domain randomization with bayesian optimization,” IEEE Robotics
and Automation Letters, vol. 6, no. 2, pp. 911–918, 2021.

[32] F. Muratore, T. Gruner, F. Wiese, B. Belousov, M. Gienger, and
J. Peters, “Neural posterior domain randomization,” in Conference on
Robot Learning. PMLR, 2022, pp. 1532–1542.

[33] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger, “Gaussian
process optimization in the bandit setting: No regret and experimental
design,” arXiv preprint arXiv:0912.3995, 2009.

[34] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” in International conference on
machine learning. PMLR, 2018, pp. 1587–1596.

[35] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR,
2018, pp. 1861–1870.

[36] C. Wang, G. Xie, L. Wang, and M. Cao, “Cpg-based locomotion
control of a robotic fish: Using linear oscillators and reducing control
parameters via pso,” International Journal of Innovative Computing
Information and Control, vol. 7, no. 7B, pp. 4237–4249, 2011.

[37] A. Crespi, D. Lachat, A. Pasquier, and A. J. Ijspeert, “Controlling
swimming and crawling in a fish robot using a central pattern
generator,” Autonomous Robots, vol. 25, no. 1, pp. 3–13, 2008.

7494

Authorized licensed use limited to: Zhejiang University. Downloaded on July 09,2024 at 04:38:49 UTC from IEEE Xplore.  Restrictions apply. 


