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Abstract— In the process of operating, robots will inevitably
encounter damage due to external or internal factors, such
as motors blockage. For the legged robot, when the motors
of joints are failing, if other motors still act according to the
original instructions, it will cause the robot to deviate from
the predetermined trajectory, which is unacceptable for legged
robots. Inspired by the fact that the model trained by supervised
learning on the training set can be generalized to the testing set,
our goal is to obtain a dynamic model that can be generalized
to all kinds of motor damage situations. It can predict what
state will be reached in the next step when an action is applied
in the current state. With this dynamics model, we use the
Monte Carlo particles to optimize the feasible actions in a model
predictive control (MPC) fashion and achieve the expected
goal (such as making the robot walk in a straight line). The
comparison experiment adopt two meta-learning model and
vanilla dynamics model approaches, the results show that the
proposed method is superior to the three baselines, which proves
the effectiveness of the proposed method.

I. INTRODUCTION

Legged robots have great potential in search and rescue,

disaster response, and routing inspection. However, one of

the factors limiting their widespread adoption in complex

environments is their fragility. Emergency braking of non-

fatal damage will undoubtedly degrade the robot’s efficiency.

Especially in the field of search and rescue, it’s not conve-

nient for humans to access in many cases, so it’s impossible

to repair the damaged robots. Nevertheless, if the robot

still executes the original control command, unpredictable

behavior may be produced, which may cause unacceptable

damage to itself or the external environment. For the legged

robot, when the motor is damaged, if other motors don’t

make adaptive action adjustments, it will cause the robot to

deviate from the predetermined trajectory and even cause the

robot to overturn, as is shown in Fig. 1.

The use of robots to assist the handicapped has made long-

term progress [1], [2], but the research on how to restore

robots after an injury is relatively less compared with the

former. Traditional robot damage recovery consists of two

steps, first self-diagnosis is performed, and then the most

appropriate alternative strategy based on the diagnosis results

is selected, which is pre-designed [3], [4]. However, alterna-

tive policies are difficult to design because the probability

of damage increases exponentially with the complexity of

the robot, making it hard to consider all possible scenarios
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Fig. 1: (a) Examples of motor damage in a legged robot, the

damaged motor is marked in red. (b) The trajectory of the

robot when one motor is damaged and the original forward

motion command is still applied. The black dots indicate the

trajectory of the robot without motor damage, other colors

represent the trajectory of the robot under different motor

damage situations. The starting point of the robot movement

is at (0,0).

beforehand. Furthermore, this approach often fails, due to

the results of the self-diagnosis are not necessarily correct,

or there are no alternative policies designed to meet this

situation in advance.

The recent research about damage robots recovery can be

roughly divided into two types, the first is the trial-and-error

method, and the second is the learning-based fast parame-

ters adaptive method. [5] used the robot’s actuation-sensing

relationship to indirectly infer its morphology structure and

used this self-model to generate forward motion. When part

of the leg was removed, the self-model was adjusted to

generate new gaits. [6] proposed the T-resilience method,

which can be divided into two parts. The first part includes

self-modeling and controller evaluation, and the second part

is responsible for transferring the controller to real-world

robots. The performance of the robots in the real world will

be used to update the robots’ self-modeling in the first part.

[7] proposed an intelligence trial-and-error method, which

enables the robots to store previous experience knowledge in

the form of a behavior-representation space map, and uses

the Bayesian optimization method combined with the map to

guide the damaged robot to try different types of behaviors.

However, these methods also have drawbacks. In the early

stage of trial and error, due to the algorithm is not yet perfect,

the robot may perform some behaviors that are harmful to

the robot’s body or the outside world.

In the second learning-based parameters adaptation ap-

proach, In the second learning-based parameters adaptation

approach, [8] proposed a shared module strategy (SMP),

which treats each actuator of the robot as an agent, and
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there are bottom-up and top-down message transmission

mechanisms between agents. The results show that a single

strategy can provide control policies for robots with different

morphological structures. Therefore, when the robot breaks

its leg, resulting in a change in morphology structure, the

previous strategy can still be applied. However, this method

needs to obtain the speed and pose of each limb, they are

difficult to obtain in the actual environment, which limits it

to be used only in the simulation environment. [9] proposed

a fast parameter adaptive method combining meta-learning

and model predictive control method. However, in the new

environment, further training is needed to fine-tune the

network parameters to better adapt to the new environment.

[10] proposed policy dynamic value function (PD-VF) .

The key idea is to obtain a value function based on policy

and dynamics embedding by using the supervised learning

method. When testing, the strategy that can maximize the

rewards through less interaction can be inferred. However,

[11] takes this method as a comparative experiment, and

finds its performance is poor, which may be caused by the

inaccurate estimation of value function conditioned on policy

and environment embeddings.

In this paper, a robot damage adaptive recovery method

based on model-based reinforcement learning is proposed. It

mainly consists of two parts: the first part is a probabilistic

ensemble dynamics model based on future trajectory en-

hancement and damage information addition. Compared with

the deterministic dynamics model, the probabilistic model

can better describe the inherent randomness of the dynamics

system. Ensemble dynamics model can effectively alleviate

the inaccuracy caused by less training data. Furthermore,

we enhance the future trajectory of the training data and

use a 0-1 vector to encode the damage information of

the robot in the state of the robot. Experiments show that

these two methods can effectively improve the generalization

effect of the algorithm. After the dynamics model is well

trained, given the current state and action, the next state

can be predicted. The second part is based on the idea of

the model predictive control (MPC) method. By using the

dynamics model obtained in the previous step, the planning

algorithm based on Monte Carlo particles can obtain the

optimal action trajectory in the future and select the first

action to be executed by the robot. Furthermore, our method

allows changing the reward function online and therefore is

able to modify the behavior of the robots.

The remainder of the paper is organized as follows:

Section II is a brief summary of the related works. Section III

describes the proposed method in detail. Section IV shows

the experimental results. Finally, we conclude and suggest

future work in SectionV.

II. RELATED WORKS

A. Model-based Reinforcement Learning

By learning a forward dynamics model to approximate the

state transition dynamics of the environment, model-based

reinforcement learning (MBRL) methods can achieve better

sampling efficiency than model-free reinforcement learning

(MFRL) methods. The learned dynamics model can be used

as a simulator of MFRL [12], [13], provide priors for the

algorithm [14], [15], or be utilized to predict future trajectory

in an MPC fashion [16], [17]. The main challenges are how

to obtain an accurate dynamics model and how to make

the learned model more generalizable. To this end, many

scholars have carried out a series of works.

[18] applied the MBRL method to the physical quadruped

robot. It only takes 4.5 minutes to collect data on the

physical robot, and after being trained, the quadruped robot

can walk smoothly on the ground. To make the method

more suitable for real-time control, the two loops are de-

coupled by parallelizing the planning and control frequency.

In addition, trajectory generators [19] are used instead of

directly learning the position control signal of the motor for

obtaining smooth gaits. [20] proposed a new method called

probabilistic ensembles with trajectory sampling (PETS),

which uses the ensemble models for prediction and the prob-

abilistic dynamic models to output the distribution, which

can isolate two types of uncertainties in MBRL: aleatoric

and epistemic. Besides, it can greatly improve sampling

efficiency compared to model-free methods. Our method is

also based on the idea of this method. [21] is proposed

aimed at service robots, which need to ensure safety in the

process of interacting with people. To achieve this goal,

a probabilistic latent variable model is used to enable fast

inference of the posterior environment transition distribution

given contextual data, and then uncertainty-aware trajectory

sampling is used to evaluate safety constraints. [22] proposed

an improved model-based meta RL approach. In order to

achieve online model adaptation, based on the idea of meta-

learning, this method learns different latent vectors in each

training scenario. Experiments show that the learned model

can be applied to scenarios such as changes in ground friction

and external forces applied to the robot.

B. Legged Robot Control

[24] design a terrain estimation method based on gen-

eralized least square by fusing the body, leg, and contact

information. Based on virtual model control (VMC) and

quadratic program (QP), the optimal foot force adapted to

the terrain is obtained. [25] propose a hierarchical learning

method used to realize an 18 DOF spider robot reach

any target. In the lower level, the model-free reinforcement

learning method is used to train the motion primitives. In the

upper level, the model predictive control method is utilized to

sequence these skills. This approach improves the sampling

efficiency and generalization of real-world robots. [26] also

adopts the hierarchical framework, in which the upper level

policy issues instructions in the latent space, and can specify

the execution time of this latent command, the lower level

policy uses this latent command and the information obtained

by the robot’s sensors to control actuators. The advantage of

this approach is that it enables the upper controller to run at

a lower frequency than the lower controller.
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Fig. 2: Framework of proposed method.

III. METHODOLOGY

A. Problem Statement

The process of a robot interacting with environment is

a standard reinforcement learning problem, which can be

modeled as a Markov decision process defined by a tuple

(S,A, p, r, γ, ρ0). Here, S represents the state space, A
denotes the action space, p(st+1|st, at) is the state transition

probability of applying action at under state st, r(st, at)
indicates the reward value given by the environment when

action at is applied under state st, γ ∈ (0, 1] is the discounted

factor used to weight the reward, and ρ0 represents the

initial state distribution. Under the framework of RL, the

RL algorithm tries to find a strategy π so that in each cor-

responding state, there is an optimal action that maximizes

the cumulative discounted reward.

The proposed method is a model-based RL algorithm, and

the goal is to learn a robust dynamic model f̃θ with good

generalization. By means of supervised learning, the motor

of the robot is damaged randomly firstly, then the damaged

robot is used to interact with the environment to get the

training set D = {(st, at, st+1)}. These data are used to

train the dynamic model, when the dynamic model is well

trained, it can generalize to situations that are not included

in the training set (in the context of this paper, it refers to

motor damage situations that are not included in the training

set). This trained model can be used to approximate the real

dynamics model f , when given the current state-action repair

(st, at), the next state st+1 can be predicted. The predicted

st+1 can be used to guide the subsequent planning method

to select the optimal action. Therefore, even in the case of

motor damage not included in the training set, the robot can

still move forward as expected.

B. Dynamics Model

In the model-based RL method, when using neural net-

work for dynamic modeling, it can be divided into determin-

istic neural network and probabilistic neural network. The

former is relatively simple to complete, but it is easy to over-

fit when there are few samples. Compared with the former,

the latter increase the ability to describe aleartoric uncertainty

(the inherent system stochasticity). For the latter, the neural

network receive st and at as input and output a distribution

of st+1. The most common distribution is the Gaussian dis-

tribution f̃θ = Pr(st+1| st, at) = N(μθ(st, at),Σθ(st, at)),

and the loss is:

L(θ) = E(st,at,st+1)∼D[− log f̃θ(st+1| , st, at)] (1)

In the proposed method, the damage state of the robot

is represented by a 0-1 vector C, in which 0 indicates

that the motor is damaged, and 1 represents the motor

isn’t damaged. We concatenate this vector C with orig-

inal state st and rewrite it as st = CONCAT (st, c).
Furthermore, we use the future trajectory to enhance the

training data of the model, record the future trajectory as

τt,M = {(st, at), ..., (st+M , at+M )}, so the modified loss of

probabilistic model is:

L(θ) = Eτt,M∼D[− 1

M

t+M−1∑

i=t

log f̃θ(si+1| , si, ai)] (2)

In the process of using neural networks to establish

dynamics models, there is not only aleatoric uncertainty but

also epistemic uncertainly, which is caused by fewer samples

and insufficient estimation. To alleviate the epistemic uncer-

tainty, the ensemble models are adopted, which include B
bootstrap models. Using θB to refer to the parameters of

bth model f̃θb , then the final predictive parameters’ value

is the average value of ensemble model’s parameters, i.e.

f̃θ = 1
B

B∑
b=1

f̃θb . Therefore, the final updating formula of the

dynamic models’ parameters is:

θ ← θ − α∇θ
1

B

B∑

i=1

Li(θ) (3)

C. Planning Method

We adopt the model predictive control (MPC) method

to plan the actions. These methods can be roughly divided

into three types according to how they represent the state

distribution: deterministic, parametric, and particle methods.

[27] shows the particle methods are competitive in terms

of computability and accuracy and don’t require strong

assumptions about the distribution, so we choose particle-

based methods in our approach. This method evolves a group

of Monte Carlo particles and takes the distribution of these

particles as the distribution after selecting an action. When

using the ensemble dynamic model, for each particle, only

one ensemble model is used from the beginning to the end.

Assuming there are P particles and the prediction horizon is

H , then the evaluation function of the action is written as:

R =

t+H∑

i=t

1

P

P∑

p=1

r(spi , ai) (4)

With the evaluation function in hand, we employ the

Cross-Entropy Method (CEM) to optimize the next action.

Randomize the initial sample distribution firstly, then verify

the action effects by (4). Next, extract the parameters with

better effect in the previous part (for example, the top

20%), readjust the parameters of the distribution (mean

and standard deviation) according to the newly extracted

parameters, and optimize them continuously. The goal of this
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method is to minimize the cross-entropy between the data

distribution obtained by Monte Carlo particles and the real

data distribution and try to make the sampling distribution

of the particles the same as the real situation. After several

rounds of iteration, the controller selects the first action of

the optimized action sequence as the action to be applied

to the robot. The overall flow of the proposed method is

summarized in Fig. 2 and Algorithm 1.

Algorithm 1 Framework of proposed method

1: Initialize parameters of forward dynamics model θ;

2: Initialize replay buffer D;

3: for each iteration do
4: // COLLECTING TRAINING SAMPLES

5: for t = 1 to PathLength do
6: Execute a∗ from planning part (or random policy

for the first iteration) to collect {(st, at, st+1)};

7: Update D ← D ∪ {(st, at, st+1)};

8: end for
9: Process data for future trajectory enhancement;

10: // UPDATE DYNAMICS MODEL

11: for b = 1 to B do
12: Sample τt,M ∼ D;

13: Pass through dynamics model and calculate the

loss function according to E.q.(2);

14: end for
15: Update θ according to E.q.(3);

16: // PLANNING

17: for p = 1 to P do
18: for i = t to t+H do
19: Calculate evaluation function according to

E.q.(4);

20: Update CEM(·) distribution;

21: end for
22: end for
23: Return first action a∗ from optimal actions a∗t:t+H .

24: end for

IV. EXPERIMENTS

A. Simulation Setup

The proposed method and comparative experiment are

trained in a virtual environment created by Mujoco [28].

It was chosen because it simulates contact forces more

realistically than other simulators, which is important for

legged robots. The training is performed using Tensorflow

[29] on four NVIDIA Geforce GTX 2080Ti GPUs. In

addition, to speed up training, we use MPI4PY to build a

parallel environment to speed up the training process1. The

robot consists of a body, four thighs, and four calves, it has

a total of eight degrees of freedom. The 3D model of each

component is modeled with SolidWorks software [30]. After

modeling, the .STL file and the physical parameters such

as the mass the moment of inertia of the component are

exported. Using that information, a .XML file can be made

1https://github.com/mpi4py/mpi4py

to describe the entire robot. The state includes the position,

posture, and line velocity of the body link, as well as the

position and velocity of each joint. The reward is designed

as the speed of the robot in the x-axis direction. The specific

parameters in the training process are shown in Table I.

TABLE I: Parameters Setting

Param Value

learning rate 0.001
batch size 256

path length in one epoch 1000
train epochs in one iteration 20

total iteration 20
valid split ratio 0.1

hidden size (200, 200, 200, 200)
nonlinearity swish

ensemble size 5
particles 20

candidates (CEM) 200
horizon (CEM) 30

B. Ablation Experiment

Fig. 3: The comparison of the reward curves of the proposed

method, the method without future trajectory enhancement,

and the method without damage information under the train-

ing set and testing set.

To verify the effect of future trajectory enhancement and

the addition of damage information in the proposed method,

we design ablation experiments. The results of the training

set are shown in Fig. 3 (a), and the result of the testing set

is shown in Fig. 3 (b). The experiment results are obtained

from three groups of different random seeds, where the

solid lines represent the mean value and the shaded parts

represent the variance of results. It can be seen that on

the training set, although the final training results of the

three achieve almost the same value, the proposed method

converges significantly faster than the methods without fu-

ture trajectory enhancement and damage information. On

the testing set, the rewards of the proposed method are

higher than that of the two comparison methods, indicating

that the future trajectory enhancement and the addition of

damage information will indeed strengthen the generalization

performance of the algorithm. We conduct a T-test on the

results of the testing set, and the results are shown in Table II.

The P-value on the testing set between the proposed method

and the method without future trajectory enhancement is

48
Authorized licensed use limited to: Zhejiang University. Downloaded on July 09,2024 at 04:39:51 UTC from IEEE Xplore.  Restrictions apply. 



9.9452×10−5, which is less than the threshold value of 0.05,

the P-value between the proposed method and the method

without damage information is 8.7666×10−5, which is also

less than the threshold, proving that there is a significant

difference between the proposed method and other methods,

i.e. the rewards of the proposed method is statistically higher

than that of the comparison methods.

TABLE II: T-test for the last five rewards of ablation exper-

iment

Methods Proposed method v.s.
No future enhancement

Proposed method v.s.
No damage information

P value 9.9452× 10−5 8.7666× 10−5

Fig. 4: Comparison with the proposed method and three

baselines.

C. Comparison with baselines
In this part, we evaluate and compare the proposed method

to three baselines. It is noted that we run three times using

different seeds for each method to gauge consistency. Three

baselines are introduced firstly.
Gradient-Based Adaptive Learner (GrBAL): 2 GrBAL

uses gradient-based meta-learning to perform online adapta-

tion. In particular, it uses MAML to train a dynamics model

by optimizing an adaptation meta-objective.
Recurrence-Based Adaptive Learner (ReBAL): Model-

based meta-RL method is similar to GrBAL. However, it

utilizes a recurrent model to learn its own update rule (i.e.,

through its internal gating structure).
Vanilla Dynamics Model (Vanilla DM): Dynamics model

trained to minimize the standard one-step forward prediction

loss.
The comparative results of the proposed method and the

three baselines are shown in Figure 4. It can be seen that the

rewards of the proposed method are significantly higher than

that of the three comparison methods. After convergence, the

average rewards of the proposed method are about 1600, the

average rewards of ReBAL and Vanilla DM are about 900,

and the average rewards of GrBAL are only about 400. The

results demonstrate the effectiveness of the proposed method.

2We used a reference implementation publicly available at
https:github.comiclaveralearning to adapt.

D. Result Visualization

In order to visualize the results of the proposed method,

the model obtained in the last iteration of training is used

to verify the motion performance of the robot under three

conditions of damage to the 7th, 0th, 0th and 5th motors,

respectively. The 7th motor was damaged in the training

set, and the 0th and 5th motor was not damaged in that.

Under three different random seeds, the motion trajectories

of the robots are shown in Fig. 5. It can be seen that at the

same time, the robot in the training set moves the farthest,

followed by the case of one motor being damaged, and the

robot moves the shortest distance when the two motors are

damaged. Although the performance of the testing set is

not as good as that of the training set, the final distance

is around 35m in the test set, which is 87.5% of the final

distance reached by the robot in the training set. Furthermore,

the proposed method can still make the robot move along

the x-axis in the case of two motors broken, which has

never appeared in the training set. All these prove the strong

generalization ability of the dynamic model in the proposed

method, which is also the reason why the proposed method

can make the robot keep the original motion trajectory under

the robot damage conditions.

V. CONCLUSIONS

This paper proposes a model-based reinforcement learning

method for robot damage recovery, which mainly consists

of two parts: an ensemble-based dynamics model enhanced

by future trajectory and damage information, and a Monte

Carlo particle-based planning method. The introduction of

the future trajectory and damage information improves the

generalization of the dynamic model. The combination of

the two parts enables the proposed method to keep the

original motion trajectory of the robot even when one or two

motors are damaged. Furthermore, the proposed method can

also be extended to other legged robots which has different

configurations from the mentioned robot. In the future,

we will apply this method to the real robot environment.

However, due to the existence of sensor noise, there will be

a gap between the simulation and the real world, which is

also a problem we need to solve.
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