
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

Meta Reinforcement Learning of Locomotion
Policy for Quadruped Robots With Motor Stuck

Ci Chen , Chao Li, Haojian Lu , Member, IEEE, Yue Wang , Member, IEEE,
and Rong Xiong , Senior Member, IEEE

Abstract— Significant progress has been made in enhancing
the motion capabilities of quadruped robots in unstructured
environments due to advancements in hardware and control
algorithms. However, limited research has been conducted on
the fault-tolerant control of quadruped robots, which is crucial
for their operation in remote or extreme environments like
disaster sites. In this paper, we primarily focus on fault-tolerant
strategies for common joint-stuck situations. By leveraging the
static stability of quadruped robots, it becomes possible to
adjust their control policies and enable them to continue fol-
lowing predetermined trajectories. We introduce a contextual
meta-reinforcement learning (Meta-RL) method to design fault-
tolerant policies. This method infers task-related latent vectors
from the context to assist in training the policy network, ensuring
both conciseness and optimality in various situations. Addition-
ally, to expedite algorithm training, we propose a reference action
generator (RAG). To validate the proposed algorithm, extensive
simulations and physical experiments are conducted. The results
demonstrate that our method allows the robot to maintain its
trajectory even when faced with motor locking. Furthermore,
our method outperforms all baseline algorithms, highlighting its
superiority in terms of fault tolerance.

Note to Practitioners—The motivation of this article is to
provide fault-tolerant policies for quadruped robots, specifically
referring to the policies for joint-stuck situations. Previous
fault-tolerant strategies either require individually designing
control strategies for each joint stuck task, which brings a
significant workload to designers, or adopting a unified strategy
that cannot provide the optimal strategy for each task. In this
article, we utilize the Meta-RL method to handle the joint stuck
issue in robots for the first time. By combining the context
encoder and RAG, we can provide more suitable policies for
various motor-stuck tasks. Both the simulation and physical

Manuscript received 8 May 2024; accepted 29 June 2024. This article
was recommended for publication by Associate Editor W. Zhang and Editor
P. Rocco upon evaluation of the reviewers’ comments. This work was
supported in part by the National Science and Technology Major Project of
China under Grant 2021ZD0114504, in part by the National Nature Science
Foundation of China under Grant 62373322 and Grant 62303407, in part
by Zhejiang Provincial Natural Science Foundation of China under Grant
LD22E050007, and in part by the Innovation and Development Special Fund
of Hangzhou Chengxi Sci-Tech Innovation Corridor. (Corresponding author:
Yue Wang.)

Ci Chen, Haojian Lu, Yue Wang, and Rong Xiong are with the State Key
Laboratory of Industrial Control and Technology and the Institute of
Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
(e-mail: wangyue@iipc.zju.edu.cn).

Chao Li is with DeepRobotics Company, Hangzhou 310058, China.
Data is available on-line at: https://github.com/chenci107/MetaRL_for_

Quadruped.
This article has supplementary material provided by the

authors and color versions of one or more figures available at
https://doi.org/10.1109/TASE.2024.3424328.

Digital Object Identifier 10.1109/TASE.2024.3424328

experiments validate the effectiveness and applicability of this
method.

Index Terms— Meta reinforcement learning, quadruped
robots, fault tolerance.

I. INTRODUCTION

QUADRUPED robots are extensively utilized in various
scenarios, including search and rescue operations, disas-

ter response efforts, and routine inspections, primarily due to
their exceptional motion capabilities [1], [2]. However, given
the uncontrolled environments in which they operate, repairing
robots’ faults becomes an arduous task. Hence, it is crucial to
develop an algorithm that can equip quadruped robots with
fault tolerance [3], [4], [5], [6]. Motor locks are a common
issue in robot failures and can result from various causes,
such as mechanical structure damage, hardware communica-
tion interruption, driver failure, or motor overload break [7].
When a joint becomes stuck, the robot’s degree of actuator
(DOA) is reduced, significantly impacting legged locomotion
in terms of mobility and stability. This could lead to the
robot’s inability to continue performing tasks or return to a
safe position. However, quadruped robots possess redundancy,
which enables them to tolerate faults. By effectively adjusting
the control policy, quadruped robots can maintain a normal
walking pattern.

It is a challenging task to equip a quadruped robot with
fault-tolerant capability. Traditional methods [6], [8], [9],
[10] involve analyzing the leg’s workspace, designing fault-
tolerant gaits, and subsequently performing kinematic inverse
solutions. In a recent study, [7] combines fault-tolerant control
with whole-body control (WBC) to achieve stable and contin-
uous forward walking of a quadruped robot. However, these
methods require extensive expertise and entail a laborious
manual tuning process. Additionally, such methods necessitate
designing controllers with different parameters for various
joint stuck situations, placing a significant workload on the
designer.

Fortunately, the advancement of deep reinforcement learn-
ing (RL) allows for the design of fault-tolerance strategies
without the need for extensive manual intervention [11],
[12], [13], [14]. The RL methods enable learning through
trial and error, allowing the agent to autonomously dis-
cover effective strategies. Generally, conventional RL aims
to maximize rewards for specific tasks, with learned policies

1545-5955 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Zhejiang University. Downloaded on July 16,2024 at 13:45:48 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4632-7001
https://orcid.org/0000-0002-1393-3040
https://orcid.org/0000-0002-0981-935X
https://orcid.org/0000-0001-9318-9014

2 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 1. Comparisons of different fault-tolerant methods. (a) Traditional
methods involve designing separate controllers with different parameters for
each motor stuck situation, which can be cumbersome. (b) Model-based RL
methods are challenging to guarantee optimality across different tasks and
meet the real-time requirements of the quadruped robot system. (c) Model-free
RL methods with generality employ a single controller to handle various
motor-stuck situations but sacrifice optimality in different scenarios. (d) The
proposed method utilizes the context-based Meta-RL method, offering a
concise yet optimal solution. Additionally, it is easier to deploy on real robots.

performing well only within those tasks. However, differ-
ent joint failures in quadruped robots can lead to various
changes in the robot’s dynamics, resulting in different state
transition probabilities, which are considered distinct tasks.
To ensure the adaptability of control strategies across a variety
of tasks, some model-based RL methods [11], [12], [13],
[15] train a universal dynamics model using interaction data
collected under various scenarios of joint stuck, based on this
dynamics model, planning methods are used to determine
the next action. However, applying such methods to the
twelve-joint quadruped robot presents a challenge. A single
dynamics model struggles to provide accurate estimates for
each joint stuck scenario, leading to planning algorithms being
unable to deliver optimal actions for each task. Additionally,
the computational complexity of each planning iteration is
very high, making it difficult to apply to the quadruped
robots that demand high real-time performance. In addition
to model-based RL methods, there are also several studies
utilizing model-free RL methods [14], [16], [17] to address the
design of fault-tolerance strategies, predominantly employing
domain randomization techniques. This involves randomly
locking different joints during training, with the aim of learn-
ing a generalized control policy capable of managing different
joint failures. Similar to model-based methods, the optimality
of model-free methods is limited since different joint-stuck
scenarios require different optimal control strategies. In sum-
mary, the advantages and disadvantages of the aforementioned
methods are depicted in Fig. 1.

Unlike conventional RL methods, which are designed to
solve single task and require sacrificing optimality to achieve
generality across multiple tasks, meta-reinforcement learning
(Meta-RL), also known as “Learning to learn”, requires models
not only to excel at specific tasks but also to acquire the capa-
bility to learn, which enables rapid adaptation to new tasks.
Specifically, Meta-RL differs from conventional RL in two
main aspects. Firstly, the training data originates from a variety
of tasks, and the learned strategies are applied to a collection
of tasks rather than a single task. Secondly, the process is
divided into two phases: the training phase, where a strategy
is learned from a set of training tasks, and the adaptation
phase, where the strategy is applied to new, unseen tasks after

minimal interaction. Meta-RL is inherently suited for handling
multi-tasks due to the aforementioned characteristics. In this
paper, we formulate the joint stuck scenarios in quadruped
robots as a Meta-RL problem. By mimicking humans, agents
are encouraged to acquire useful knowledge from a set of
training tasks, which then facilitates rapid adaptation to new
tasks. Our contributions are as follows.

1) We model the issue of quadruped robot joints stuck as
a Meta-RL problem, adopting a context-based method
for resolution. Specifically, we design a context encoder
to infer information related to joint stuck, providing
prior knowledge to assist in the training of the policy
network. By incorporating an additional encoder, our
method significantly augments the policy’s capability
to obtain optimal actions tailored to specific scenarios,
offering a significant edge over the generality-focused
conventional RL methods. Compared to the traditional
method of designing a customized strategy for each
task, our method is more streamlined. Additionally,
we incorporate the concept of curriculum learning into
the training process, enabling the learned strategies to
handle situations where joints are stuck at different
angles.

2) We devise a closed-loop reference action generator
(RAG) to facilitate Meta-RL training based on the con-
cept of residual learning. Instead of directly outputting
the motor’s expected position, Meta-RL performs adjust-
ments based on the outputs from RAG. To address the
issue of joint stuck, we design a selection module to
identify injured legs, thereby providing the RAG with a
more reliable reference signal, and establishing a closed-
loop control. This method greatly alleviates the difficulty
of Meta-RL learning, accelerates the algorithm’s conver-
gence, and elevates performance.

3) A comprehensive series of ablation studies, compara-
tive analysis, and experiments under conditions such as
omnidirectional movement and multi-joint stuck are con-
ducted. The results from both simulation and physical
experiments demonstrate the feasibility, effectiveness,
and advancements of the proposed method.

The rest of this paper is structured as follows: Section II
provides a comprehensive review of related works. Our method
is detailed in Section III. In Section IV, we present and discuss
the experimental results. Finally, Section V concludes the
paper and outlines future research directions.

II. RELATED WORKS

A. Fault-Tolerant Control in Robotics

Fault-tolerant control of quadruped robots can be classified
into two categories: traditional methods and learning-based
methods. Traditional methods, as studied in [6], [8], [9],
and [10], analyze the workspace of an individual leg with
various stuck joints to design gait patterns and parameters for
different walking situations of the quadruped robot. However,
these methods typically limit the faulty leg to a supportive
role, failing to fully exploit its potential by utilizing the
available motion space. In contrast, [18] proposes a method

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Zhejiang University. Downloaded on July 16,2024 at 13:45:48 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: META RL OF LOCOMOTION POLICY FOR QUADRUPED ROBOTS WITH MOTOR STUCK 3

to ensure the quadruped robot’s displacement and derives
a kinematics solution of posture to utilize the fault leg’s
workspace. Reference [19] introduces the use of two moving
appendages in a pinion arrangement to alter the robot’s center
of mass (COM) during a fault. Additionally, [7] suggests a
fault-tolerant method using an equivalent geometric model to
rebuild the workspace of the failed leg. They further optimize
the body posture using a nonlinear approximation formula
based on this model, which enables smooth robot move-
ment when combined with WBC. However, these methods
either require additional mechanical structures or necessitate
designing controllers with different parameters for each joint,
resulting in significant complexity.

Learning-based methods for fault-tolerant control can be
broadly categorized into two categories: model-based RL
methods and model-free RL methods. For the first category,
the method in [11] trains a prior dynamics model, which,
when integrated with recent data, facilitates rapid adaptation
to the local context. Reference [13] proposes a trajectory-
wise multiple-choice learning method, where a multi-headed
dynamics model is learned for dynamics generalization. Simi-
larly, [12] utilizes an ensemble network to train the dynamics
model while incorporating future trajectories and damage
information to enhance generalization. Once the dynamics
model is obtained, these methods rely on model predictive
control (MPC) and employ algorithms like random shooting
(RS) or cross entropy method (CEM) to select the next action.
On the other hand, model-free RL methods, as discussed
in [14], introduce an adaptive RL algorithm with dynamics
randomization. This algorithm can effectively train a robot
in random motor failure scenarios and formulate a single
robust policy for fault-tolerant robot control. Additionally,
some methods [17], [20] initially employ model-free RL
approaches to train expert policies tailored for each task.
These expert strategies are then used to collect interaction
data. Subsequently, offline RL algorithms, such as Decision
Transformer [21], are applied to train the collected data across
different tasks, with the objective of developing a versatile
policy capable of handling a range of tasks. However, the
aforementioned methods either pose challenges when deploy-
ing them to physical robot systems due to computational
complexity or fail to ensure optimality under different joint
stuck conditions. As a result, there is considerable scope for
improvement in this field.

B. Meta Reinforcement Learning

The common state-of-the-art (SOTA) deep RL algorithms
are mainly limited to single tasks. These algorithms require
agents to interact extensively with the environment and then
be tested in the same task. When testing on different tasks, the
performance of these algorithms often deteriorates. Meta-RL
presents a solution for multi-task learning by not only training
the model to accomplish tasks but also enabling it to learn a
“learning ability” that facilitates rapid adaptation to new tasks.
Meta-RL methods can be classified into two types: gradient-
based and context-based methods. Gradient-based Meta-RL
methods aim to identify an appropriate set of neural network

initialization parameters. When faced with a new task, after a
few iterations using this parameter set, it is possible to achieve
favorable results on the new task. The foundational work for
this type of method is the Model Agnostic Meta-Learning
(MAML) algorithm [22]. The First Order Meta-Learning (Rep-
tile) algorithm [23] simplifies the training process based on
MAML, while the Model Agnostic Exploration with Struc-
tured Noise (MAESN) algorithm [24] introduces structured
noise to achieve structured exploration within the episode. The
second category is context-based Meta-RL methods, which
extract task-specific information from historical task samples
and incorporate it into hidden variables. By adjusting its strat-
egy based on these hidden variables, the learning algorithm can
optimize its performance. For example, the Fast-RL via Slow-
RL (RL2) algorithm [25] employs a recurrent neural network
(RNN) to adapt its hidden variables using historical interactive
information, thus maximizing the cumulative rewards within
each attempt. The Simple Neural Attentive Learner (SNAIL)
algorithm [26] combines temporal convolutions (TC) and soft
attention mechanisms to address the instability issues inherent
in the RNN learning process. However, these methods are all
based on on-policy RL methods, which have relatively low
sampling efficiency. In contrast, we combine the setting of
Meta-RL with off-policy RL methods to improve sampling
efficiency and accelerate the training process.

III. METHODOLOGY

The objective of this work is to empower the robot to
maintain a desired walking pattern, irrespective of any joint
getting stuck. The complete framework is illustrated in Fig. 2.
The subsequent sections provide a detailed description of the
entire framework.

A. Problem Statement

The locomotion process of the quadruped robot can be
represented as a Markov decision process (MDP), symbolized
by the tuple ⟨S,A, p, r, γ ⟩. Where S denotes the state space,
A represents the action space, p(st+1|st , at) signifies the state
transition probability, r(st , at) indicates the reward function
and γ is the reward discount factor. The robot performs an
action at at the current state st , receives a scalar reward rt ,
and subsequently transitions to the next state st+1 based on
the transition probability.

As the locking variability of different joints modifies the
robot’s dynamic model, it leads to changes in state transi-
tion probability p(st+1|st , at). This implies that for identical
commands issued to the quadruped robot, varying joint stuck
configurations will result in different walking patterns. Con-
sequently, each joint stuck situation corresponds to a unique
MDP, which we define as a task T . We divide the set of
all situations, denoted as �(T), into two parts: the training
task set �train(T) and the testing task set �test (T). During
the training stage, we sample tasks T ∼ �train(T) to learn a
policy. In the adaptation stage, when a specific task T ∼ �(T)
is given, the agent collects a certain amount of data D(T)

adapt and
adapts the trained policy to obtain the adapted policy πT . The
objective of Meta-RL is to maximize the expected return of
the adapted policy ET ∼�(T),at ∼πT [

∑
t γ

tr(st , at)].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Zhejiang University. Downloaded on July 16,2024 at 13:45:48 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 2. Framework of our method. In the training stage, we select a reference leg for the RAG based on the stuck joint’s index, training both the context
encoder and policy network. The context encoder generates a latent vector z, which is derived from the contextual information and serves as input to the
policy network for training. Additionally, we train a recognition network in a supervised manner. This network takes z as input and predicts the index of the
leg where the stuck motor is located. During the adaptation stage, the robot, unaware of the specific stuck motor, executes a trajectory to generate z. This z
helps the policy network produce πω(at |st , z), which is filtered to ensure smooth motion. Additionally, z is used by the recognition network to identify the
faulty leg, guiding the selection of the reference leg for the RAG and obtaining πG(at |st , z). The robot’s joint target positions are determined by integrating
outputs from these two components, and joint torques are calculated via a PD controller for execution.

B. Design of Meta-RL

Utilizing contextual information to address Meta-RL tasks
is an effective method. It leverages historical samples to infer
task-related information, enabling the policy network to adjust
its policy in a more targeted manner. Instead of designing pol-
icy networks that incorporate memory-based structures (e.g.,
RNN, TC, etc.) to extract task-related information, we design
the encoder network Eφ as a separate component from the
policy network, as depicted in Fig. 2, where φ represents
the parameters of the encoder. The historical information is
referred to the context c. Specifically, cTn = (sn, an, rn, sn+1)

represents an experience within task T , and cT1:N encompasses
all previous experiences. During the training phase, Eφ com-
presses the historical experience cT1:N into a distribution of
context variables, facilitating the extraction of task-relevant
information and its integration into latent vectors. As an MDP
should be permutation invariant, i.e., the order in which tuples
are observed does not affect the inference of the task, we define
the latent vector as follows:

z ∼ N (5N
n=1 Eµ

φ (c
T
n),5

N
n=1 Eσ

φ (c
T
n)) (1)

where N represents a normal distribution. Eµ
φ denotes the first

half of the data outputted by Eφ , which serves as the mean
of the normal distribution. Eσ

φ refers to the second half of the
data outputted by Eφ , used to determine the variance of the
normal distribution.

Inspired by the work presented in [27], we utilize the
off-policy RL method soft Actor-Critic (SAC) [28] to integrate
with the context encoder. Specifically, the first optimization
objective of the encoder is designed as the critic’s loss
function, aimed at optimizing the state-action value func-
tion (Q-function). By associating z with the Q-function, the

encoder is encouraged to extract information related to the
Q-function estimation from the task set. The second com-
ponent is to constrain the mutual information between z
and c, which can be regarded as an information bottleneck
method [29]. This helps to preserve task-relevant information
and filter out task-irrelevant information, thereby avoiding
model overfitting. This is achieved through the Kullback-
Leibler (KL) divergence.

Lencoder =Lcri tic+βDK L(N (5N
n=1 Eµ

φ (cn),5
N
n=1 Eσ

φ (cn))
∥∥p(z))

(2)

where β represents the weight coefficient and p(z) is a unit
Gaussian prior over z. Lcri tic denotes the critic’s loss function,
which aims to minimize the Bellman residual.

Lcri tic = E(s,a)∼B,z∼Eφ

[
1
2

(
min
i=1,2

Qθi (s, a, z)− Q̂(s, a, z)
)2

]
(3)

where θ denotes the network parameters of the critic
(Q-network), i denotes various Q-networks, we utilize the
smaller of the two estimated values, effectively preventing
overestimation. The Q̂(s, z, a) can be calculated as follows.

Q̂(s, a, z) = r + γEs ′∼B,z∼Eφ

[
Vψ̄ (s

′, z)
]

(4)

where Vψ̄ represents the target value function, with its param-
eters set as an exponential moving average of the weights from
the value function Vψ . This method has been demonstrated to
stabilize training. ψ is the value network’s parameters. It is
optimized by minimizing the squared residual error between

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Zhejiang University. Downloaded on July 16,2024 at 13:45:48 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: META RL OF LOCOMOTION POLICY FOR QUADRUPED ROBOTS WITH MOTOR STUCK 5

Vψ (s, z) and V (s, z).

Lvalue = Es∼B,z̄∼Eφ

[
1
2

(
Vψ (s, z̄)− V (s, z̄)

)2
]

= Es∼B,z̄∼Eφ

[
1
2

(
Vψ (s, z̄)

−Ea∼π

[
min
i=1,2

Qθi (s, a, z̄)− logπω(a|s, z)
])2

]
(5)

where ω denotes the network parameters of the actor, and z̄
signifies the exclusion of gradient compution. The actor can
be improved by applying the following policy improvement
formula.

Lactor

= Es∼B,z∼Eφ

DK L

πω(·|s, z)∥

1
α

exp(min
i=1,2

Qθi (s, z̄, ·))

Zθ (s, z)


(6)

where α is the regularization coefficient, the partition function
Zθ (s, z) is utilized to normalize the distribution, since it does
not contribute to the gradient with respect to the new policy,
we ignore it. Consequently, Eq. (6) can be further simplified
as follows.

Lactor = Es∼B,a∼π,z∼Eφ

[
α logπω(a|s, z)− min

i=1,2
Qθi (s, a, z̄)

]
(7)

It can also be interpreted as maximizing the value function
V (s, z).

C. Design of State / Action Space and Reward Functions

The state st ∈ R37 includes the base’s linear velocity, roll,
pitch, yaw, and angular velocity, as well as the angle and
angular velocity of each joint. In addition, it contains four
binary values indicating whether the foot is in contact with
the ground.

The action in our method is the joint position residuals.
Specifically, we incorporate the concept of residual learning to
enhance the positive samples in the replay buffer and expedite
the training process. The joint position command q∗

j sent to
the robot consists of two components: the first component
is the output of the Meta-RL, at = πω(at |st , z), and the
second component is the output of the RAG, a′

t = πG(at |st),
as explained in Section III-D. i.e., q∗

j = at + a′
t . It is worth

noting that the angle of the stuck motor remains constant
regardless of the value of q∗

j . Furthermore, we employ a
proportional-derivative (PD) controller to convert the joint
angles into torques, as illustrated below:

τ j = kp(q∗

j − q j)+ kd(q̇∗

j − q̇ j) (8)

where q∗

j and q̇∗

j denote the desired joint angles and
angular velocities, respectively, with q̇∗

j set to zero. The
variables q j and q̇ j represent the current joint angles and
angular velocities, respectively. Additionally, we manually

TABLE I
REWARD FUNCTION DESIGN

specify the position and velocity stiffness using kp and kd ,
respectively.

Our reward function consists of six terms: r1, which incen-
tivizes the robot to track target velocity; r2, which penalizes
the rotation of the robot’s body in the roll and pitch direc-
tions, it helps in maintaining the robot’s balance; r3, which
encourages the movement of the robot’s feet in the desired
direction; r4, which imposes a penalty on motor costs; r5,
which penalizes contact between the robot’s body and the
ground; and r6, which incentivizes contact between the robot’s
feet and the ground. The detailed calculation formulas are
provided in Tab. I.

D. Closed-Loop Reference Action Generator

1) Reference Action Generator: Drawing inspiration from
the method outlined in [30], we devise RAG, which calcu-
lates the phase of each leg using the touchdown information
of the reference leg lre f and integrates it with predefined
foot trajectories to yield the relative position of each foot
to its corresponding abduction joint coordinate system at
every moment. In contrast to [30], which consistently uses
the front left (FL) leg as the reference leg, we incorporate
a selection module to identify the injured leg, dynamically
selecting an uninjured leg as lre f . Furthermore, while the
trajectory designed in [30] only allows the robot to move in a
straight line forward, we enhance the foot trajectory to enable
planar movement, significantly broadening the robot’s mobility
capabilities. Additionally, instead of using robotic dynamics
models to solve a robot’s joint torques as in [30], we employ
inverse kinematics (IK) to determine the robot’s joint angles.
By introducing the RAG, we increase the number of positive

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Zhejiang University. Downloaded on July 16,2024 at 13:45:48 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

samples in Meta-RL, thereby greatly reducing the training
difficulty.

Specifically, a motion cycle is defined as Tstride, which
comprises two phases: the swing phase Tsw and the stance
phase Tst . Specifically, Tstride = Tsw + Tst . The duration
of the swing phase Tsw can be manually determined based
on the specific situation. Besides, Tst =

2Lspan

vd
, where vd

represents the predetermined speed, and Lspan is half the stride
length.

The core of the RAG resides in the phase generation,
which is designed based on the ground contact information
of lre f . During the training phase, the injured leg is known,
allowing us to select an uninjured leg as lre f . In the adap-
tation phase, with the injured leg unknown, we employ the
Selection Module (which will be introduced in Section III-D2
subsequently) to detect the injured leg, similarly opting for
an uninjured leg as lre f . A touch-down event is defined
when the z-direction force exceeds the threshold, indicating
that lre f has made contact with the ground. We denote this
event with the Boolean value T Dre f , which is true when
lre f touches the ground and false during the swing phase.
The phase of each leg can be calculated using the following
formulas:

tT D
re f = t i f T Dre f

= true (9)

telapse
re f =


t − tT D

re f i f 0 < telapse
re f < Tstride

Tstride i f telapse
re f > Tstride

0 i f telapse
re f < 0

(10)

ti = telapse
re f −1Sre f,i Tstride (11)

where tT D
re f is the moment when lre f touches down on the

ground, telapse
re f is the elapsed time after tT D

re f , and ti represents
the clock for each leg. 1Sre f,i denotes the phase difference
of leg i with respect to lre f . We adopt the commonly used
trot gait in this paper, wherein the phase of the FL leg aligns
with that of the hind right (HR) leg, and the phase of the
front right (FR) leg aligns with that of the hind left (HL)
leg. Consequently, when selecting FL/HR as the reference
leg, 1Sre f,i is calculated using Eq. (12a). Similarly, when
FR/HL is chosen as the reference leg, 1Sre f,i is determined by
Eq. (12b).

1SF L
trot = 1SH R

trot =


1Sre f,F L

1Sre f,F R

1Sre f,H L

1Sre f,H R

 =


0.0
0.5
0.5
0.0

 (12a)

1SF R
trot = 1SH L

trot =


1Sre f,F L

1Sre f,F R

1Sre f,H L

1Sre f,H R

 =


0.5
0.0
0.0
0.5

 (12b)

We then normalize the clock of each leg by mapping ti
to Si (t). Specifically, when a leg is in the swing phase, 0 ≤

Si (t) ≤ 1, while in the stance phase, 1 ≤ Si (t) ≤ 2, see the

formula below for details.

Si (t) =



ti + Tstride

Tst
−Tstride < ti < −Tsw

ti + Tsw

Tsw
−Tsw < ti < 0

ti
Tst

0 < ti < Tst

ti − Tst

Tsw
Tst < 0 < Tstride

(13)

After determining the phase, we utilize it to design the
robot’s foot trajectory. During the swing phase, a Bezier curve
is employed as the reference trajectory. Conversely, during the
stance phase, a sinusoidal curve is utilized.

psw
i =



psw
i,x (Si (t)) =

n∑
k=0

cxy
k Bn

k (Si (t)) cos ρ

psw
i,y (Si (t)) =

n∑
k=0

cxy
k Bn

k (Si (t)) sin ρ

psw
i,z (Si (t)) =

n∑
k=0

cz
k Bn

k (Si (t))

s.t. 0 ≤ Si (t) ≤ 1 (14)

pst
i =


pst

i,x (Si (t)) = Lspan(1 − 2Si (t)) cos ρ
pst

i,y(Si (t)) = Lspan(1 − 2Si (t)) sin ρ

pst
i,z(Si (t))=σ cos

{
π

2Lspan

[
pst

i,x (Si (t))+ pst
i,y(Si (t))

]}
s.t. 1 ≤ Si (t) ≤ 2 (15)

where psw
i denotes the position of the robot’s foot relative to

the abduction joint coordinate system during the swing phase,
with psw

i,x , psw
i,y , and psw

i,z representing its coordinates in the three
directions, respectively. cxy

k refers to the k-th control point
on the xy plane, cz

k represents the k-th control point in the
z direction, and Bn

k (Si (t)) denotes the Bernstein polynomial
of degree n. Additionally, ρ denotes the trajectory’s rotation
angle relative to the robot’s forward direction. On the other
hand, pst

i refers to the foot’s position during the stance phase,
with σ signifying the amplitude variable. By utilizing IK, the
robot’s reference joint position can be determined based on
these variables.

πG(at |st) = I K (psw
i , pst

i) (16)

where st refers to the foot contact information of the robot,
which is utilized to determine whether a touch-down event has
taken place.

2) Selection Module: During the adaptation stage, the index
of the robot’s stuck motor is often unavailable. When the joint
in the reference leg becomes stuck, there is a risk that it may
fail to touch down on the ground. This may lead to disordered
gait in robots, consequently degrading the performance of the
RAG. To tackle this challenge, we develop a selection module
that comprises two components: the context encoder, which
has been previously trained, and the recognition network. The
recognition network takes z as input, derived from historical
information cT1:N using the context encoder. It outputs the
probability of each leg being injured. We train the recognition

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Zhejiang University. Downloaded on July 16,2024 at 13:45:48 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: META RL OF LOCOMOTION POLICY FOR QUADRUPED ROBOTS WITH MOTOR STUCK 7

Algorithm 1 Training Stage
1: Initialize replay buffer Bi and Ci for each task Ti .
2: for epoch in pre-defined steps do
3: for each Ti do
4: Initialize and empty context replay buffer Ci ;
5: Specify the reference leg lre f according to Ti ;
6: for t = 1, . . . , T do
7: Sample c ∼ Ci , get z according to Eq. (1);
8: Get a′

t = πG(at |st) according to Eq. (16);
9: Get at = πω(at |st , z) and filter it;

10: Execute the desired joint angles q∗

j = at + a′
t ;

11: Obtain reward rt and transfer to next state st+1;
12: Store ⟨st , at , rt , st+1⟩ to Bi and Ci ;
13: end for
14: end for
15: for step in training steps do
16: for each Ti do
17: Sample context ci ∼ Ci and RL batch bi ∼ Bi ;
18: Get z according to Eq. (1);
19: Calculate Li

encoder according to Eq. (2);
20: Calculate Li

value and Li
cri tic according to Eq. (5)

and Eq. (3), respectively;
21: Calculate Li

actor according to Eq.(7);
22: end for
23: Update parameters of all networks;
24: end for
25: end for

network in a supervised manner, employing the cross-entropy
loss as the loss function.

Lrecog = −
1
Ns

Ns∑
i=1

4∑
j=1

ŷi j log(yi j) (17)

where Ns is the number of samples, yi j represents the pre-
dicted probability that the i-th sample belongs to the j-th
category, and ŷi j represents the true label. In the adaptation
stage, the FL leg can be used as the reference leg to move
a short distance, after which the current stuck motor can be
identified by the collected tuples, allowing for the adaptive
selection of the reference leg for the RAG. In summary, the
pseudocode for the training phase is presented as Algorithm 1,
while the adaptation phase is outlined in Algorithm 2.

IV. EXPERIMENT

A. Experimental Setup

1) Training Details: During training, we utilize Pybullet
as the simulator, with an update frequency set to 1000 Hz.
The algorithm’s actions are repeated 20 times, resulting in
an algorithm frequency of 50 Hz. The URDF model of
the robot is based on the Jueying Lite3 from DeepRobotics
company. If the robot’s body contacts the ground or the
posture of the body exceeds a certain threshold, the current
epoch will be terminated prematurely. Tab. II presents the
values of hyperparameters used in the algorithm. Moreover,
to enhance policy robustness, we employ an asymmetric noise
strategy [31], as illustrated in Tab. III, where only the actor’s

Algorithm 2 Adaptation Stage
1: Initialize context cT = {}.
2: Specify reference leg as lre f = F L .
3: for step in predetermined steps do
4: Sample z ∼ N (0, 1);
5: Get ⟨st , at , st+1, rt ⟩ according to line 8-11 in

Algorithm 1;
6: Accumulate context cT = cT ∪ ⟨st , at , st+1, rt ⟩;
7: end for
8: Calculate z according to Eq. (1);
9: Get injured leg by selection module and re-choice lre f ;

10: for step in predetermined steps do
11: Get a′

t = πG(at |st , z) under updated lre f ;
12: Get at = πω(at |st , z) under updated z;
13: Execute the desired joint angles q∗

j = at + a′
t ;

14: Obtain reward rt and transfer to next state st+1;
15: end for

TABLE II
HYPERPARAMETER SETTINGS

TABLE III
RANGE OF STATE NOISE

inputs are perturbed with noise while the critic’s inputs remain
noise-free. This method allows the robot to be resilient to noise
without compromising the algorithm’s performance.

2) Motor Stuck Setting: We record the range of each joint
during normal movement. Based on this range, we employ
a curriculum training [32] method. Specifically, we establish
five curriculum levels. During the initial 1/5 phase of the
training process, we sample angles of stuck joints within the
range of level 0. In the phase from 1/5 to 2/5, we conduct
sampling within the range of level 1, and so on. The specific
values are outlined in Tab. IV. The joint angles associated
with level 0 correspond to the angles at which the robot
maintains a standing position. In particular, we evaluate the
algorithm’s performance using forward locomotion experi-
ments and diagonal locomotion experiments. As shown in

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Zhejiang University. Downloaded on July 16,2024 at 13:45:48 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 3. Comparison of various ablation methods and the proposed method under different motor stuck cases. Except for Ref-Only, all results are derived
from three different random seeds. The x-axis of the bar chart represents the different stuck joints, while the y-axis corresponds to the values of MELV or
MERP.

TABLE IV
CURRICULUM SAMPLING RANGE

Tab. IV, in the forward locomotion experiment, the swing
range of the abduction joint is extremely small, indicating that
even if the abduction joint is locked, it has minimal impact
on the robot’s locomotion performance. Therefore, for this
experiment, we only consider the cases where the hip and
knee joints are locked (a total of eight tasks). In the diagonal
locomotion experiment, the swing range of the abduction joint
is larger and can significantly affect the robot’s locomotion
performance. Hence, in this task, we consider all cases where
any joint is locked (a total of twelve tasks).

3) Evaluation Metrics: Inspired from [33], our analyses
are based on two metrics: Mean Episode Linear Velocity
Tracking Reward (MELV) -the average of r1 per episode
as outlined in Tab. I, which gauges the robot’s proficiency
in tracking target velocity. A higher MELV indicates supe-
rior performance. The second metric is the Mean Episode
Roll Pitch Tracking Reward (MERP) -the average of r2 per
episode as shown in Tab. I, assessing the stability of
the robot’s posture, where a greater MERP signifies better
stability.

B. Ablation Study

1) Ablation Study of Meta-RL: In this section, we conduct
four ablation experiments to evaluate the influence of Meta-RL
on the forward motion task. The experimental setup for each
experiment is outlined below.

Ref+FullSAC: In this set of experiments, we use RAG to
obtain πG , while πω is obtained through the SAC algorithm.
Typically, RL algorithms are only applicable to individual
tasks. In order to make the SAC algorithm applicable to
various tasks, we adopt the domain randomization method.
Specifically, during the robot training process, the stuck motors
are randomly sampled from all tasks, i.e., {FL_hip, FL_knee,
FR_hip, FR_knee, HL_hip, HL_knee, HR_hip, HR_knee},
allowing the algorithm to encounter each task during training.

Ref+PartSAC: As with Ref + FullSAC, πG is derived
using RAG, and πω via SAC. Unlike Ref + FullSAC, during
training, stuck motors are randomly sampled exclusively from
training task set {FL_hip, FL_knee, FR_hip, FR_knee}. This
method allows us to assess the generalization capabilities of
the conventional RL algorithm on tasks it has not previously
encountered, i.e., the testing task set {HL_hip, HL_knee,
HR_hip, HR_knee}.

Ref+MetaRL: The proposed method. πG is obtained via
RAG, while πω is derived through Meta-RL. The training and
testing task set follows that of Ref + PartSAC, where only
tasks from the training set are encountered during the training
process. By comparing it with Ref + PartSAC, we can validate
the advantages of Meta-RL over conventional RL methods in
enhancing generalization capabilities.

Ref-Only: Utilizing only the RAG to facilitate robot motion,
serves as the lower bound for various ablation algorithms.

We conduct tests on the trained algorithms and show their
results in Fig. 3. To validate the algorithm’s efficiency across
a variety of stuck angles, we select two distinct stuck angles
for each joint, as illustrated on the left side of Fig. 3.
Furthermore, we showcase the accumulative rewards in Fig. 4.
Based on the results presented in Fig. 4, the proposed method
achieves the highest rewards, followed by Ref + PartSAC and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Zhejiang University. Downloaded on July 16,2024 at 13:45:48 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: META RL OF LOCOMOTION POLICY FOR QUADRUPED ROBOTS WITH MOTOR STUCK 9

Fig. 4. The accumulative rewards of ablation study. The x-axis represents the
number of training epochs. These results are averaged across three different
seeds, with the shaded areas indicating the variance among these seeds.

Ref + FullSAC. Additionally, Fig. 3 indicates that the pro-
posed method has almost achieved the highest value in both
criteria, for both the training task set and the testing task set,
with no significant difference between the two sets (within
each subplot, the first four groups are allocated to the training
set, whereas the latter four groups are reserved for the testing
set). Under normal conditions (where no motor stuck occurs),
Ref-Only enables the robot to move forward. However, in the
event that the motor is stuck, Ref-Only fails to maintain the
robot’s expected motion state, leading to flipping or severe
trembling. For Ref + PartSAC, while it achieves commend-
able results in the training set, its performance significantly
deteriorates in the testing set. These findings demonstrate the
weak generalization of conventional RL algorithms (i.e., Ref +

PartSAC) on unseen tasks and highlight the effectiveness of
the Meta-RL settings.

Unlike Ref + PartSAC, Ref + FullSAC has achieved
favorable outcomes on both the training and testing tasks,
a result of its exposure to all tasks during the training process.
It is worth noting that, the proposed method, which has not
been trained on the testing tasks, surpasses Ref + FullSAC in
all tasks across training and testing sets. This can be attributed
to Ref + FullSAC’s compromise of task-specific optimality in
pursuit of general applicability across multiple tasks. These
results suggest that the Meta-RL setting can provide better
policies for various tasks compared to domain randomization
methods (i.e., Ref + FullSAC).

2) Ablation Study of RAG: In this section, we conduct three
sets of experiments to demonstrate the necessity of residual
design (i.e., whether using a RAG), The experimental design
for the Ref+MetaRL method aligns with the previous section,
while the settings for the other two methods are as follows.

NoRef+MetaRL: Without utilizing the RAG, the robot’s
initial default joint angles are set to q∗

ini t = ([0,−0.9, 1.8]×4)
rad, and the final angles of each joint are calculated as q∗

j =

q∗

ini t + at . The action at is selected by the Meta-RL algorithm
in the proposed method. The design of the training and testing
sets is identical to that of Ref + PartSAC/Ref + MetaRL.

Foothold+MetaRL: In contrast to our proposed method,
the correction is carried out in Cartesian space to adjust the
foothold position, which is similar to the method presented
in [34]. Specifically, the reference foothold point is obtained
using the RAG, and then the Meta-RL algorithm corrects
its position. The final joint positions are determined using
leg IK: q∗

j = I K (pre f + at). Where pre f represent the
reference foothold positions obtained from the RAG (as shown

Fig. 5. Trajectories of the robot’s foot under Ref+MetaRL and NoRef +

MetaRL methods. From top to bottom, the order is FL, FR, HL, and HR. The
x-axis represents the robot’s forward direction, while the y-axis indicates the
height of the robot’s foot from the ground.

in Eq. (14) and Eq. (15)), while at represent the corrected
foothold positions obtained from the Meta-RL algorithm. The
design of the training and testing sets is consistent with Ref +

PartSAC/Ref + MetaRL.
Fig. 3 reveals that the NoRef + MetaRL method exhibits

poor performance in various knee-stuck tasks. In the absence
of RAG guidance, the control strategies learned tend to drive
the robot forward by shuffling, as shown in Fig.5, leading to
excessive wear on the robot’s feet and challenges in deploying
to physical robots. In our proposed method, incorporating a
RAG allows for rapid accumulation of positive samples in the
replay buffer, thereby mitigating sparse rewards and enhancing
the algorithm’s performance. Additionally, this method ensures
locomotion through stepping rather than shuffling.

Fig. 3 demonstrates that among all ablation studies, except
for the Ref-Only method serving as the lower bound,
Foothold + MetaRL exhibits the poorest performance, occa-
sionally even underperforming Ref-Only. While previous
work [34] successfully employs RL to correct foothold posi-
tions on uneven ground, it fails to perform well in our
task. Since the joints of each leg are coupled, IK becomes
problematic when the joints are stuck. Therefore, our task
benefits more from direct optimization in joint space rather
than optimizing the foothold position in the Cartesian space.

C. Comparison With Baselines

In this section, we compare the proposed method with three
model-based RL methods and two model-free RL methods,
which are listed as follows.

Fast Adaptation Dynamics Model (FADM, [12]): Model-
based RL method, it utilizes an ensemble-based dynamics
model that integrates future trajectory and damage information
to learn the dynamics model. The actions are selected via
CEM, which are based on the predicted states.

Gradient-Based Adaptive Learner (GrBAL, [11]): Model-
based RL method, it leverages gradient-based methods to
enable online adaptation, specifically by utilizing MAML [22]
to optimize an adaptation meta-objective for training a dynam-
ics model.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Zhejiang University. Downloaded on July 16,2024 at 13:45:48 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 6. The results of comparison experiments. The x-axis represents the
motor indexes, and the y-axis represents the criteria.

Recurrence-Based Adaptive Learner (ReBAL, [11]): Model-
based RL method, which shares similarities with GrBAL.
It employs RNN to learn its own update rule via an internal
gating structure.

Decision Transformer (DT, [17]): Model-free RL method,
this method initially focuses on training separate control
policies for various joint stuck tasks to gather interaction
data. These data are then used to train a network based on
the Decision Transformer, ultimately yielding a control policy
with generalization capabilities.

Randomized Ensembled Double Q-Learning (REDQ, [35]):
A SOTA model-free RL algorithm, which is based on the
SAC algorithm, utilizes the mean of multiple critics for the
value function, which significantly reduces the variance in
value estimation and greatly enhances algorithm performance.
Furthermore, we employ domain randomization techniques to
expose the method to all joint stuck tasks during training,
enhancing its generality.

Fig. 6 presents the comparison results of various baselines
using the same evaluation metrics as the ablation experiments.
For the MELV metric, FADM, GrBAL, ReBAL, and DT
methods perform relatively poorly, while REDQ performs
better, but its values are only about half of those of the
proposed method. Additionally, for the FL_knee joint, REDQ
exhibits a wider range of data distribution, indicating sensitiv-
ity to random seed selection, whereas the proposed method
shows a narrower distribution, demonstrating robustness to
random seed choice. Regarding the MERP metric, the three
model-based methods and DT still yield unsatisfactory results.
For REDQ, the data distribution range remains large, espe-
cially for the FL_knee joint. In the cases of HL_hip, HL_knee,
and HR_knee, REDQ’s median exceeds that of the proposed

TABLE V
INFERENCE TIME COMPARISON

method because of domain randomization, which is trained for
testing tasks but not for the proposed method. Nevertheless,
considering both metrics holistically, the proposed method still
outperforms REDQ.

We suspect that the poor performance of the model-based
methods may be attributed to the high degree of freedom in the
quadruped robot, leading to a complex dynamics model and
increased difficulty in model learning. Modeling errors can
also have a negative impact on the policies. As for the DT
method, we attribute its performance to the use of collected
offline data for training. The limited size and coverage of the
offline dataset prevent it from effectively covering the state
and action spaces, hindering the achievement of the policy
comparable to that of learning through interaction with the
environment.

Additionally, we have calculated the inference time for
each step of different algorithms, as presented in Tab. V.
It can be observed that the three model-based methods are
comparatively time-consuming due to the numerous iterations
required in the planning process of CEM/RS. In contrast, our
method and two model-free methods provide rapid inference
times, making them suitable for deployment on quadruped
robots that demand high control frequency.

D. Analysis of Selection Module

We collect 100 sets of latent vectors and their corresponding
indices for each stuck joint, apply t-distributed Stochastic
Neighbor Embedding (t-SNE) to reduce the dimensionality,
and plot the results in Fig. 10 (a). It can be observed that the
t-SNE method effectively distinguishes the hip and knee joints
of each leg. However, the latent vectors corresponding to the
abduction joints of the four legs are mixed, making it difficult
to differentiate. This aligns with our previous analysis, which
suggests that the impact of the abduction joints on the robot’s
motion is smaller, as they have a smaller swing amplitude
compared to the hip and knee joints.

The selection module is capable of obtaining the injured
leg index, which aids in the selection of a suitable reference
leg for the RAG. To evaluate the effectiveness of the selec-
tion module, we classify the aforementioned data using the
trained recognition network and output the injured leg index
corresponding to the latent vectors. The confusion matrix in
Fig. 10 (b) shows that out of 1200 data points, only one is
misclassified, resulting in an accuracy of 99.9%. Compared
to the dimensionality reduction method t-SNE, the selection
module demonstrates better prediction of the injured leg index,
providing evidence of its effective identification of injured
legs.

E. Multiple Scenes Experiments

1) Diagonal Motion Experiment: In the previous experi-
ments, the objective is to drive the robot forward along the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Zhejiang University. Downloaded on July 16,2024 at 13:45:48 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: META RL OF LOCOMOTION POLICY FOR QUADRUPED ROBOTS WITH MOTOR STUCK 11

Fig. 7. Snapshots of the proposed method under multiple-scene experiments in the simulator. From top to bottom, they are the diagonal motion experiment,
the dual-joint stuck experiment, and the rough terrain experiment. The link highlighted in red corresponds to the stuck joint, and in this case, we have chosen
the FL_hip joint as an example.

Fig. 8. (a) and (c). The trajectory of the robot in the diagonal motion experiment. In Case One, the abduction joint is set to 0.0 rad, the hip is set to -0.9
rad, and the knee is set to 1.8 rad. In Case Two, the abduction joint is set to 0.1 rad, the hip is set to -1.2 rad, and the knee is set to 2.1 rad. Due to space
limitations, we only show the trajectory under the FL leg. Each coordinate axis represents the position of the robot’s COM in space. The robot starts at
coordinates (0, 0, 0.26) and executes a diagonal movement towards the front left. (b) and (d). Comparison of the proposed method and the Ref-Only method
in terms of MELV and MERP metrics.

Fig. 9. (a) and (c). The trajectory of the robot in the rough terrain experiment. The design of Case One and Case Two aligns with Fig. 3. Due to space
limitations, we only show the trajectory under the FL leg and HL leg. Each axis denotes the position of the robot’s COM in space. The robot initiates at
coordinates (0, 0, 0.26) and performs a forward movement along the x-axis. (b) and (d). A comparative analysis of the proposed method and the Ref-Only
method based on MELV and MERP metrics.

x-axis, indicating that the rotation angle ρ in Eq. (14) and
Eq. (15) is set to zero. To evaluate the robot’s omnidirec-
tional motion capabilities with a stuck joint, we conduct an
experiment in this section to make the robot follow a diagonal

trajectory while maintaining a desired yaw angle. Unlike
walking straight along the x-axis, the trajectory is affected
by the abduction joints. Hence, in this section, we verify the
occurrence of any of the twelve joints getting stuck.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Zhejiang University. Downloaded on July 16,2024 at 13:45:48 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 10. (a). t-SNE visualization for the latent vector of context encoder on
different joints. (b). Confusion matrix of the selection module, each element
in the matrix represents the number of model predictions where the predicted
category is along the horizontal axis and the actual category is along the
vertical axis.

Fig. 8 (a) and (c) depict the COM’s trajectory of the
diagonal motion experiment. Upon analyzing the trajectory
labeled as Ref-Only, we observe a significant impact on the
robot’s trajectory due to motor locking, where the robot even
fell due to FL_knee locking. By implementing our proposed
method, the robot’s trajectory closely aligns with the target
trajectory. Fig. 8 (b) and (d) demonstrate the comparison of
the two methods in terms of MELV and MERP metrics. It can
be observed that the proposed method significantly improves
the values of these metrics in all tasks. These experiments
demonstrate the effectiveness of our proposed method in
achieving omnidirectional locomotion in quadruped robots.
Previous research on fault-tolerant strategies [11], [12], [14],
[16] for quadruped robots lack experimentation involving the
robot’s omnidirectional movement.

2) Multiple Joints Stuck Experiment: The quadruped robot
has six degrees of freedom and twelve degrees of actuator, pro-
viding redundancy. Therefore, theoretically, to ensure normal
robot motion, the number of stuck joints should be at most
six. We train corresponding models for scenarios involving
stuck joints from one to six and record the performance
of the proposed method and Ref-Only method across two
metrics, MELV and MERP, as shown in Fig. 11. It can be
observed that the proposed method significantly outperforms
the Ref-Only method across various numbers of stuck joints.
However, as the number of stuck joints increases, the robot’s
performance on both metrics sharply declines, aligning with
our intuition that more stuck joints make it increasingly
difficult for the robot to maintain the desired motion state.

Furthermore, we validate the motion performance of the
proposed method during dual-joint stuck conditions. Fig. 12
illustrates the results, evaluated using the MELV and MERP
metrics. The bottom left corner represents the results of Ref-
Only, while the top right corner represents the results of
Ref +[]MetaRL. For instance, in (a), the values of 0.01 and
0.8, highlighted by red circles, correspond to the results of
Ref-Only and Ref + MetaRL methods, respectively, when
FL_ab and FL_hip joints are locked. Through Fig. 12 (a)
and (b), it is evident that the proposed method significantly
enhances the robot’s motion performance during dual joints
stuck. For a more intuitive comparison, Fig. 7 displays the
results of the proposed method when FR_hip and HR_hip
joints are locked.

3) Rough Terrain Experiment: To validate the robustness
of the proposed method across different terrains, we modify

Fig. 11. The relationship between the performance of the two methods and
the number of stuck joints. The x-axis denotes the number of stuck joints,
while the y-axis illustrates the performance.

Fig. 12. Heatmap of the dual-joint stuck experiment, each grid represents the
value of metric, with the horizontal and vertical axes representing the specific
stuck joints. The upper right area corresponds to the results of Ref+MetaRL,
while the lower left area corresponds to the results of Ref-Only. The yellow
numbers on the diagonal represent single-joint stuck and can be disregarded.

the ground in the simulator to rough terrain as depicted in the
third row of Fig. 7. Fig. 9 (a) and (c) illustrate the trajectories
of robots on the rough terrain, while (b) and (d) present
the comparative results between the proposed method and
Ref-Only based on two aforementioned metrics. Analyzing
Fig. 9 (a) and (c), it can be observed that adopting the
Ref-Only method results in severe oscillations in the robot.
By employing the proposed method, the robot can better
track the target trajectory (i.e., No-Disabled). Furthermore,
analyzing Fig. 9 (b) and (d), it can be noted that the adoption
of the proposed method significantly improves both MELV
and MERP values for all joint stuck scenarios.

F. Real-World Experiment

1) Deployment Details: We conduct real-world experiments
using the Jueying Lite3 robot. It weighs 22 kg and is pow-
ered by brushless electric motors that can reach a maximum
speed of 10.6 rad/s and a maximum torque of 18 Nm. The
robot is equipped with one Inertial Measurement Unit (IMU)
and 12 motor encoders, which gather essential data about
the robot’s state, including body orientation, body angular
velocity, joint positions, and joint velocities. The ground
contact forces are detected using current loops. In the physical
environment, a common method of estimating the velocity of
a quadruped robot involves the use of an Extended Kalman
Filter (EKF) [36], which integrates data from IMU, motor
encoders, and foot-contact forces to estimate the robot’s veloc-
ity. However, due to the joint stuck in our case, the foot-contact
force information becomes inaccurate, leading to the failure of
velocity estimation. To address this issue, we have employed
the Intel Real Sense T265 camera, which is equipped with

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Zhejiang University. Downloaded on July 16,2024 at 13:45:48 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: META RL OF LOCOMOTION POLICY FOR QUADRUPED ROBOTS WITH MOTOR STUCK 13

Fig. 13. Deployment results on the physical robot, the angles at which the joints become stuck are consistent with Case One in Fig. 3. Due to limited spaces,
FL_hip and FL_knee are chosen to represent the training set, while HR_hip and HR_knee are selected for the testing set. For each joint, we display the results
obtained using two methods: Ref-Only and Ref+MetaRL. The side view is located in the top-right/top-left corner of the front view. The target direction is
indicated by the red arrows, while the red circles highlight the motors that are stuck. Due to the placement of the camera on the robot’s left side when taking
side views of FL_hip and FL_knee, and on the right side for HR_hip and HR_knee, the target directions depicted in these side views are opposite.

stereo fisheye cameras and an IMU. It uses a built-in Visual-
Inertial Odometry (VIO) algorithm to fuse data from multiple
sensors and obtain velocity information of the camera. Since
the camera is fixed to the robot via a 3D-printed connector,
its velocity is representative of the robot’s velocity. During
deployment, we utilize the API provided by the Pyrealsense2
library1 to acquire the robot’s velocity at a frequency of
50 Hz, which is then used as an input for the Meta-RL
policy.

The trained networks are converted to the ONNX format and
directly deployed on the robot without fine-tuning. To prevent
excessive changes to joint positions and enhance the motor’s
ability to track target instructions, we apply a low-pass But-
terworth filter to smooth the instructions obtained from the
Meta-RL algorithm. The Meta-RL inference frequency is set
to 50 Hz, and we achieve an actual command frequency of
1000 Hz issued to the robot by linearly interpolating between
two consecutive target joint commands. This frequency is

1https://pypi.org/project/pyrealsense2/

consistent with the simulator. Besides, we utilize pybind112

to convert the C ++ interface provided by DeepRobotics
company into a Python interface, enabling access to algorithm
inputs and outputs via the Python interface.

2) Results: Fig. 13 and Fig. 14 illustrate the motion per-
formance of the robot under different joint stuck angles,
comparing the Ref-Only and Ref + MetaRL methods. From
both figures, it is evident that utilizing the Ref-Only method
alone may result in the robot deviating from the intended
direction or even experiencing severe body shaking, leading
to uncontrollable results. By employing the Ref + MetaRL
method, the quadruped robot’s inherent redundancy allows
for fine-tuning of other joint angles through Meta-RL out-
puts, enabling the robot to maintain its original direction
and minimize body shaking. This ensures that the robot
can reach the designated position despite the joint lock.
Moreover, analysis of results from both the training and
testing sets reveals that our method maintains efficacy in
new tasks (as represented by the HR leg), demonstrating the

2https://github.com/pybind/pybind11

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Zhejiang University. Downloaded on July 16,2024 at 13:45:48 UTC from IEEE Xplore. Restrictions apply.

14 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 14. Deployment results on the physical robot, the angles at which the joints become stuck are consistent with Case Two in Fig. 3. Due to limited
spaces, FL_hip and FL_knee are chosen to represent the training set, while HR_hip and HR_knee are selected for the testing set. For each joint, we display
the results obtained using two methods: Ref-Only and Ref+MetaRL. The side view is located in the top-left corner of the front view. The target direction is
indicated by the red arrows, while the red circles highlight the motors that are stuck. Due to the placement of the camera on the robot’s left side when taking
side views of FL_hip and FL_knee, and on the right side for HR_hip and HR_knee, the target directions depicted in these side views are opposite.

effectiveness of the developed fault-tolerant strategies under
physical environments.

V. CONCLUSION

In this paper, we present a novel fault-tolerant control
strategy for quadruped robots to address the issue of joints
getting stuck. Addressing the limitations of previous research,
we leverage the Meta-RL method to model joint locking in
quadruped robots for the first time. Additionally, we propose
a RAG to accelerate the training process of the Meta-RL
algorithm, along with the development of a selection mod-
ule that ensures closed-loop control of the RAG. Extensive
simulations and physical experiments have substantiated the
superiority of the proposed method. In future research, we plan
to explore fault-tolerant motion control strategies for more
challenging terrains. Additionally, we will consider incorpo-
rating navigation strategies to enhance the overall performance
of the robot.

REFERENCES

[1] C. D. Bellicoso et al., “Advances in real-world applications for legged
robots,” J. Field Robot., vol. 35, no. 8, pp. 1311–1326, 2018.

[2] J. Hooks et al., “ALPHRED: A multi-modal operations quadruped robot
for package delivery applications,” IEEE Robot. Autom. Lett., vol. 5,
no. 4, pp. 5409–5416, Oct. 2020.

[3] J. Bongard, V. Zykov, and H. Lipson, “Resilient machines through
continuous self-modeling,” Science, vol. 314, no. 5802, pp. 1118–1121,
Nov. 2006.

[4] S. Koos, A. Cully, and J.-B. Mouret, “Fast damage recovery in robotics
with the T-resilience algorithm,” Int. J. Robot. Res., vol. 32, no. 14,
pp. 1700–1723, Dec. 2013.

[5] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret, “Robots that can
adapt like animals,” Nature, vol. 521, no. 7553, pp. 503–507, 2015.

[6] C. F. Pana, I. C. Resceanu, and D. M. Patrascu, “Fault-tolerant gaits of
quadruped robot on a constant-slope terrain,” in Proc. IEEE Int. Conf.
Autom., Quality Test., Robot., Sep. 2008, pp. 222–226.

[7] J. Cui, Z. Li, J. Qiu, and T. Li, “Fault-tolerant motion planning and
generation of quadruped robots synthesised by posture optimization and
whole body control,” Complex Intell. Syst., vol. 8, no. 4, pp. 2991–3003,
Aug. 2022.

[8] J.-M. Yang, “Fault-tolerant gaits of quadruped robots for locked joint
failures,” IEEE Trans. Syst. Man Cybern., C, Appl. Rev., vol. 32, no. 4,
pp. 507–516, Nov. 2002.

[9] J.-M. Yang, “Crab walking of quadruped robots with a locked joint
failure,” Adv. Robot., vol. 17, no. 9, pp. 863–878, Jan. 2003.

[10] J.-M. Yang, “Kinematic constraints on fault-tolerant gaits for a locked
joint failure,” J. Intell. Robotic Syst., vol. 45, no. 4, pp. 323–342,
Apr. 2006.

[11] A. Nagabandi et al., “Learning to adapt in dynamic, real-world environ-
ments through meta-reinforcement learning,” 2018, arXiv:1803.11347.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Zhejiang University. Downloaded on July 16,2024 at 13:45:48 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: META RL OF LOCOMOTION POLICY FOR QUADRUPED ROBOTS WITH MOTOR STUCK 15

[12] C. Chen et al., “Fast adaptation dynamics model for Robot’s damage
recovery,” in Proc. IEEE Int. Conf. Real-time Comput. Robot. (RCAR),
Jul. 2022, pp. 45–50.

[13] Y. Seo, K. Lee, I. C. Gilaberte, T. Kurutach, J. Shin, and P. Abbeel,
“Trajectory-wise multiple choice learning for dynamics generalization in
reinforcement learning,” in Proc. Adv. Neural Inf. Process. Syst., vol. 33,
2020, pp. 12968–12979.

[14] W. Okamoto, H. Kera, and K. Kawamoto, “Reinforcement learning with
adaptive curriculum dynamics randomization for fault-tolerant robot
control,” 2021, arXiv:2111.10005.

[15] K. Lee, Y. Seo, S. Lee, H. Lee, and J. Shin, “Context-aware dynamics
model for generalization in model-based reinforcement learning,” in
Proc. Int. Conf. Mach. Learn., 2020, pp. 5757–5766.

[16] D. Liu, T. Zhang, J. Yin, and S. See, “Saving the limping: Fault-
tolerant quadruped locomotion via reinforcement learning,” 2022,
arXiv:2210.00474.

[17] X. Wu, W. Dong, H. Lai, Y. Yu, and Y. Wen, “Adaptive control strategy
for quadruped robots in actuator degradation scenarios,” in Proc. 5th Int.
Conf. Distrib. Artif. Intell., Nov. 2023, pp. 1–13.

[18] X. Chen, C. Qi, F. Gao, X. Tian, X. Zhao, and H. Yu, “Fault-tolerant
gait a quadruped robot with partially fault legs,” in Proc. UKACC Int.
Conf. Control (CONTROL), Jul. 2014, pp. 509–514.

[19] M. M. Gor, P. M. Pathak, A. K. Samantaray, J.-M. Yang, and
S. W. Kwak, “Fault accommodation in compliant quadruped robot
through a moving appendage mechanism,” Mechanism Mach. Theory,
vol. 121, pp. 228–244, Mar. 2018.

[20] C. Yu, W. Zhang, H. Lai, Z. Tian, L. Kneip, and J. Wang, “Multi-
embodiment legged robot control as a sequence modeling problem,” in
Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2023, pp. 7250–7257.

[21] L. Chen et al., “Decision transformer: Reinforcement learning via
sequence modeling,” in Proc. Int. Conf. Adv. Neural Inf. Process. Syst.,
vol. 34, 2021, pp. 15084–15097.

[22] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in Proc. 34th Int. Conf. Mach. Learn.,
vol. 70, Aug. 2017, pp. 1126–1135.

[23] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning
algorithms,” 2018, arXiv:1803.02999.

[24] A. Gupta, R. Mendonca, Y. Liu, P. Abbeel, and S. Levine, “Meta-
reinforcement learning of structured exploration strategies,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 31, 2018, pp. 1–11.

[25] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and
P. Abbeel, “RL2: Fast reinforcement learning via slow reinforcement
learning,” 2016, arXiv:1611.02779.

[26] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “A simple neural
attentive meta-learner,” 2017, arXiv:1707.03141.

[27] K. Rakelly, A. Zhou, C. Finn, S. Levine, and D. Quillen, “Efficient off-
policy meta-reinforcement learning via probabilistic context variables,”
in Proc. Int. Conf. Mach. Learn. (ICML), 2019, pp. 5331–5340.

[28] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in Proc. Int. Conf. Mach. Learn., 2018, pp. 1861–1870.

[29] R. Shwartz-Ziv and N. Tishby, “Opening the black box of deep neural
networks via information,” 2017, arXiv:1703.00810.

[30] D. J. Hyun, S. Seok, J. Lee, and S. Kim, “High speed trot-
running: Implementation of a hierarchical controller using proprioceptive
impedance control on the MIT Cheetah,” Int. J. Robot. Res., vol. 33,
no. 11, pp. 1417–1445, Sep. 2014.

[31] I. M. A. Nahrendra, B. Yu, and H. Myung, “DreamWaQ: Learning
robust quadrupedal locomotion with implicit terrain imagination via deep
reinforcement learning,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2023, pp. 5078–5084.

[32] Y. Bengio, J. Louradour, and R. Collobert, “Curriculum learning,” in
Proc. Int. Conf. Mach. Learn., Aug. 2009, pp. 41–48.

[33] X. Cheng, Y. Ji, J. Chen, R. Yang, G. Yang, and X. Wang, “Expressive
whole-body control for humanoid robots,” 2024, arXiv:2402.16796.

[34] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning
quadrupedal locomotion over challenging terrain,” Sci. Robot., vol. 5,
no. 47, Oct. 2020, Art. no. eabc5986.

[35] X. Chen, C. Wang, Z. Zhou, and K. Ross, “Randomized ensembled dou-
ble Q-learning: Learning fast without a model,” 2021, arXiv:2101.05982.

[36] M. Bloesch et al., “State estimation for legged robots-consistent fusion
of leg kinematics and IMU,” Robotics, vol. 17, pp. 17–24, Jul. 2013.

Ci Chen received the B.E. degree in agricultural
mechanization and automation from Northeast Agri-
cultural University, Harbin, China, in 2018. She
is currently pursuing the Ph.D. degree in con-
trol science and engineering with the Department
of Control Science and Engineering, Institute of
Cyber-Systems and Control, Zhejiang University,
Hangzhou, China.

Her research interests include deep reinforcement
learning and legged robots.

Chao Li received the Ph.D. degree from the Depart-
ment of Control Science and Engineering, Zhejiang
University, Hangzhou, China, in 2016.

He is currently the Chief Technology Officer of
DeepRobotics Company. His current research inter-
ests include legged robotics and robot locomotion.

Haojian Lu (Member, IEEE) received the B.E.
degree in mechatronic engineering from Beijing
Institute of Technology, Beijing, China, in 2015, and
the Ph.D. degree in robotics from the City University
of Hong Kong, Hong Kong, in 2019.

He is currently a Professor with the State Key
Laboratory of Industrial Control and Technology and
the Institute of Cyber-Systems and Control, Zhejiang
University, Hangzhou, China. His research interests
include micro/nanorobotics, bioinspired robotics,
medical robotics, micro aerial vehicles, and soft
robotics.

Yue Wang (Member, IEEE) received the Ph.D.
degree in control science and engineering from the
Department of Control Science and Engineering,
Zhejiang University, Hangzhou, China, in 2016.

He is currently a Professor with the Department
of Control Science and Engineering, Zhejiang Uni-
versity. His current research interests include mobile
robotics and robot perception.

Rong Xiong (Senior Member, IEEE) received the
Ph.D. degree in control science and engineering from
the Department of Control Science and Engineering,
Zhejiang University, Hangzhou, China, in 2009.

She is currently a Professor with the Department
of Control Science and Engineering, Zhejiang Uni-
versity. Her current research interests include motion
planning and SLAM.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Zhejiang University. Downloaded on July 16,2024 at 13:45:48 UTC from IEEE Xplore. Restrictions apply.

