2023 IEEE International Conference on Robotics and Automation (ICRA) | 979-8-3503-2365-8/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICRA48891.2023.10160889

2023 IEEE International Conference on Robotics and Automation (ICRA 2023)

May 29 - June 2, 2023. London, UK

Failure-aware Policy Learning for Self-assessable Robotics Tasks

Kechun Xu, Runjian Chen, Shuqi Zhao, Zizhang Li, Hongxiang Yu, Ci Chen, Yue Wang, Rong Xiong

Abstract— Self-assessment rules play an essential role in safe
and effective real-world robotic applications, which verify the
feasibility of the selected action before actual execution. But how
to utilize the self-assessment results to re-choose actions remains
a challenge. Previous methods eliminate the selected action
evaluated as failed by the self-assessment rules, and re-choose
one with the next-highest affordance (i.e. process-of-elimination
strategy [1]), which ignores the dependency between the self-
assessment results and the remaining untried actions. However,
this dependency is important since the previous failures might
help trim the remaining over-estimated actions. In this paper,
we set to investigate this dependency by learning a failure-
aware policy. We propose two architectures for the failure-
aware policy by representing the self-assessment results of
previous failures as the variable state, and leveraging recurrent
neural networks to implicitly memorize the previous failures.
Experiments conducted on three tasks demonstrate that our
method can achieve better performances with higher task success
rates by less trials. Moreover, when the actions are correlated,
learning a failure-aware policy can achieve better performance
than the process-of-elimination strategy.

I. INTRODUCTION

A crucial problem for robotic applications in real world is
how to promise action safety and effectiveness, especially for
the applications of robot learning policies in unseen testing
scenarios. A common way to deal with this problem is to
utilize pre-defined self-assessment rules, which verify the
feasibility of the selected actions before actual robot execution.
For example, most of works in autonomous driving [2], [3],
[4], [5], [6], [7] utilize the pre-built global map to forecast
potential collision with the selected action. Once the selected
action fails to pass the self-assessment tests, the learned
policy has to re-choose an action. However, since there is no
actual action execution, the observation stays invariant. Thus,
the same action will be re-chosen by the learned policy and
fail again, which raises a problem: how to re-choose actions
among the remaining untried ones?

Considering that the self-assessment results enable the
re-decision of a sequence of actions, in this paper, we
formally state this re-choosing process as a sequential decision
making problem under an invariant observation. Specifically,
as shown in Fig. 1(a), given an observation o, a learned
policy mg(0) generates the initial action ag, followed by a
self-assessment module SA to indicate success or failure.
If failed, the failure-aware policy 7pa is activated for re-
choosing the action. Conditioned on the observation o,
7ra (st|o) takes the self-assessment results of the previous

This work was supported in part by the National Key R & D Program
of China under Grant 2021ZD0114500. Kechun Xu, Shuqi Zhao, Zizhang
Li, Hongxiang Yu, Ci Chen, Yue Wang, Rong Xiong are with Zhejiang
University, Hangzhou, China. Runjian Chen is with The University of Hong
Kong. Corresponding author,wangyue@iipc.zju.edu.cn.

(a) general framework

0— m, - iqQy

SUCCESS
sA <

. a ® FAILL
4 ;

TrA

(b) process-of-elimination

PO ap SUCCESS
— Ty
Tea a, —> SsA <

@ FALL

N

an

(c) ours
SUCCESS

0— m
® FAIL

i |

Fig. 1. (a) The general framework to utilize the self-assessment module. A
learned policy o takes as input the observation o, and selects the initial
action ag. Then a self-assessment module SA evaluates the selected action.
If failed, a failure-aware policy mpa will re-choose the action a; until getting
successful feedback. (b) A common pipeline (process-of-elimination [1]) to
design mga, which re-chooses action a; in a sorting way using the action
affordance map generated from 7. (c) Our pipeline, which constructs a
failure memory representation m; and uses a learning-based mga .

actions as state s; to generate a new action a; at step ¢
until getting successful feedback from SA. Given the action
affordance distribution predicted from g, one intuitive way
to design mwpa, which is shown in Fig. 1(b), is to choose
the action with the next-highest affordance if the previously
selected action is evaluated as unqualified, and so forth (i.e.
process-of-elimination strategy [1], [2], [3], [4], [5], [6], [7]).
However, there raises a further question of whether it is an
optimal failure-aware policy. In other words, under invariant
observation, does the equality hold between the action with
the second-highest affordance and the action with the highest
affordance conditioned on previous failures? The process-of-
elimination strategy gives a positive answer to this question,
which means previous action failures cause no influence on
the affordance distribution of the remaining untried actions.
However, we argue that the previous failure is an important
prior for the action re-choosing. Therefore, the equality might
not always hold.

In this paper, we set to investigate the dependency between
the self-assessment results and the remaining untried actions
by learning the failure-aware policy mrs (Fig. 1(c)). We define
self-assessable robotics tasks as those where the robot can
evaluate itself by some self-assessment rules before actual
action execution. Our key insight is to integrate the self-
assessment results during the observation-invariant process

979-8-3503-2365-8/23/$31.00 ©2023 IEEE 9544

Authorized licensed use limited to: Zhejiang University. Downloaded on July 09,2024 at 05:23:33 UTC from IEEE Xplore. Restrictions apply.

into the training of wpa. We represent the results of the
previous failure verified by the self-assessment module as
my, which serves as the variable state s; of mpa. Also,
Recurrent Neural Networks [8], [9] are helpful for the implicit
representation to memorize the previous failures. Based on
these points, we propose two architectures for the failure-
aware policy. One tends to explicitly degenerate actions
similar to failed ones, while another uses recurrent network
to implicitly represent failure memory of the trial sequence.
Experiments conducted on three tasks demonstrate that our
method can achieve better performances with higher task
success rates by less trials. Moreover, we find that when the
actions are correlated, learning a failure-aware policy can
achieve better performance than the process-of-elimination
strategy. To summarize, our contributions are as follows:

¢ Our main contribution is to provide a learning-based
perspective to utilize self-assessment results to learn a
failure-aware policy for self-assessable robotics tasks.

o We propose two effective architectures for the failure-
aware policy. One tends to degenerate actions similar
to failed ones, while another uses recurrent network to
implicitly represent failure memory of the trial sequence.

o We evaluate our method with three typical self-assessable
robotics tasks, including sequential image classification,
object reorientation and localization. Both simulated
and real-world experiments validate the effectiveness of
our policy, and the two architectures present different
advantages according to the task properties. Moreover,
when the actions are correlated, learning a failure-aware
policy can achieve better performance than the process-
of-elimination strategy.

II. RELATED WORKS

Robotic Self-assessment. Recently, robotic self-assessment
has become a topic of interest in human-robot interaction. [10]
highlights the importance of online Competence Assessment
(CA) for safe real-world operation of robots. [11] further
extends the term to Proficiency Self-Assessment (PSA), which
shows the ability of a robot to predict, estimate, or measure
its performance given a context or environment before action
execution. Actually, this term can be extended to all robotics
tasks, and a self-assessable robotics task means that the
robot has some PSA metrics to evaluate its performance.
For example, lots of works discard unsafe selected actions
with prior knowledge of the global environment [2], [3], [4],
[51, [6], [7], or with estimated environment dynamics [12],
[13], [14], or by pre-acting with visual imagination [15], [16],
[17], [18]. These works either simply use self-assessment
metrics to filter actions and re-choose the action with the next-
highest affordance or handcrafted safer policy, or consume a
large amount of data to build the environment or imagination
module, which brings another problem of estimation bias.
In contrast, our work directly uses the result representation
from self-assessment during the training process, thus easily
integrating self-assessment into our policy distribution.

Failure-aware Policy Learning. In this paper, we define
the failure-aware policy to be aware of the previous action

failures, and utilize the failed trials to predict more reliable
actions. However, there are few studies under this definition.
Hence, we review works that study policies predicting the
success probability of the current action [13], [15], [16], [17],
[18], [19], [20], or estimating the novelty and uncertainty of
current observation [21], [22], [23], [24] which can be referred
to as studies of failure-prediction policy. Other works like [14]
predict the error of current action execution and propose an
error-aware policy which takes as input the predicted future
state error, and generates the corrected action. Similarly, [25]
conducts an error detector by checking the reconstruction
of the current state. However, most of these policies only
measure the success probability of the current actions, without
awareness of previous failed trials.

Robotic Exploration. Robotic exploration is a more
general domain of our work, which can be regarded as
exploration conditioned on the previous failures. Traditional
works [26], [27], [28] design algorithms to explore states
with less visiting times (i.e with larger entropy). Also, many
recent works follow the similar idea to set bonus to states
deemed to be interesting or novel [29], [30], [31], [32], [33],
[34]. Other works like [1] propose to train a set of policies
to overlap a group of contexts with a disagreement penalty.
Another view is to decouple the exploration policy from the
exploitation policy, thus eliminating the inductive bias from
task reward and stabilizing the policy training [35].

IT1T1. PROBLEM FORMULATION

In this work, we define self-assessable robotics tasks
as those where a robot has some self-assessment rules to
evaluate its performance before actually executing actions,
and the evaluation results enable action re-choosing. Such
self-assessment rules often serve as a safe module in real
applications by predicting collision with simulation, which can
provide a relatively accurate failure awareness. As a result, in
this paper, we assume that self-assessment rules that correctly
distinguish failure. Since there is no action execution, the
observation stays invariant. Following the general framework
in Fig. 1(a), in this section, we formulate and compare the
process-of-elimination strategy and our method. Given the
invariant observation o, a discrete action set A, and a self-
assessment module SA, we can formulate the same part of
the process-of-elimination strategy and our method as follows:

apg = T(O(O)|a0€¢4
1, if successful
fi(atlo) :== SA (0,at)|;>0 = { 0 otherwise

At41 = TFA (ft| O)|az+1€.A

ey

where 7 is the learned policy, a; is the selected action at
step t, f; is a binary distribution defined by the SA results
up to step ¢, and 7ga is a failure-aware policy conditioned on
invariant observation o. Note that in this work, 7 is assumed
as a differentiable policy that contains an observation encoder
and a decoder predicting the action affordances.
Process-of-elimination. This is an intuitive way to design
mra (Fig. 1(b)) which chooses the action with the next-
highest affordance after figuring out that the selected action

9545

Authorized licensed use limited to: Zhejiang University. Downloaded on July 09,2024 at 05:23:33 UTC from IEEE Xplore. Restrictions apply.

Step 0:

Observation 0

|

Observation Encoder

I—
Observation Feature

Step 1~n:

memory m,

Memory Encoder Failure Memory Feature

. . —_— —_—> Q
Action-conditioned H H H D D D % Feature Masking

Policy Architecture 1

argmax
N —_—

Decoder

Action-conditioned

Action Affordance Map

Features

Memory Encoder

Step 0: hidden state update
Observation 0 ’ ’ hy
Observation Encoder —_—> — ﬂ "
Step 1~n:
Action-conditioned — > H H D D D Decoder
memory m,

Policy Architecture 2

Fig. 2. Two architectures for the failure-aware policy mpa. Note that the observation encoder and the decoder are components of the learned policy 7o,

which accelerates the failure-aware policy training process.

is unreliable, and can be formulated as follows:

a1 = TFA (fi| 0)|ariea = m0(0) * fi(a¢|o)|a, 1 ea (2)

In this formulation, g4 is a handcrafted sorting policy, which
simply multiplies the learned policy distribution by f;. In
this way, the previous action failures do not influence the
affordance distribution of the remaining untried actions.

Failure-aware Learning Policy. In this paper, we propose
to integrate the self-assessment results into the failure-aware
policy training, and use the result representation m; from
fi as the variable state (Fig. 1(c)). Our framework can be
represented as follows:

my ~ fi(at|o) 3)
A¢41 = TFA (mt| 0; 0)|¢lt+1 €A

where 7 is a learnable failure-aware policy, m; is a
representation of f; with the same size as the action set A4,
and 6 represents the learnable parameters of neural network.

Self-assessment Representation. In our paper, m; is used
to represent the results of self-assessment. Concretely, it is a
binary or normalized matrix of which each element represents
the trial memory of the corresponding action, thus named
action-conditioned memory. m, is initialized at the beginning
of every episode. For a binary my, it is initialized as an all-
one matrix with the same size as the action set A, while for
a normalized representation, it is initialized as the normalized
affordance map predicted by the learned policy 7. If an
action is assessed as failed during the trial process, then the
corresponding element is set to zero, thus updating m; during
the whole episode.

IV. METHODS
A. System Overview

Fig. 1(c) shows our pipeline. At the first step, the learned
policy 7y takes as input the observation o to get an initial
action ag. If ag fails according to the self-assessment module
SA, a self-assessment result representation m; will be
constructed and fed into the failure-aware policy mra to re-
choose another action a;. Note that the network parameters of
o and 7pa are partially shared. Compared to the process-of-
elimination strategy, we propose to investigate the dependency
between the self-assessment results and the remaining untried
actions by learning the failure-aware policy.

B. Failure-aware Policy Architecture

Considering that the memory of previous failure can
be utilized either explicitly or implicitly, we propose two
architectures for the failure-aware policy 7mpa, which are
shown in Fig. 2. Both of them contain an observation encoder
and a decoder, which are the shared components of the learned
policy 7, which accelerates the training process.

Policy Architecture 1. The first proposed architecture is
to encode the self-assessment result representation m; into
the same shape of the embedding feature generated from the
observation encoder, and conduct an element-wise product to
mask the observation feature by the failure memory feature
embedding, which generates an action-conditioned feature.
In this way, failure memory is explicitly considered into the
feature embedding with a mask-like operation, thus affecting
a shift on the action distribution.

e =Eq(0) ®Ep(my)

a; = argmax D(e) @

at€A

where E,, E,, and D symbolize the observation encoder, the
memory encoder and the decoder respectively. a; is selected
from the action affordance map generated from D. Note that
the memory encoder can be simplified as a replica transform to
the shape of the observation feature, or an identity transform
in specific implementations.

Policy Architecture 2. The second architecture aims to
bring the failure memory as a recurrent form across the
episode using a memory-aware module. In this architecture,
the feature embedding comes from the observation o at the
first step, and from the updated m; in the following steps. In
this way, the failure memory is implicitly delivered across
the decision process as a latent embedding.

. E,(0) t=0)
where E, and E,, are of the same definitions in Eq. 4. With
the feature embedding, the memory-aware module obtains
awareness of the observation at the first step and implicitly
represents it by the hidden vector, then produces new action
distributions with recurrent memory in the following steps.

a; = argmax D (GRU(e)) (6)

at€

9546

Authorized licensed use limited to: Zhejiang University. Downloaded on July 09,2024 at 05:23:33 UTC from IEEE Xplore. Restrictions apply.

where D is of the same definition in Eq. 4, and GRU
corresponds to the memory-aware module.

C. Policy Learning

We implement behavior cloning to train the learned policy
mo. Note that there is no sequential decision making for this
stage. For each step, the policy generates an action under the
observation and gets feedback from self-assessment. Also,
since parameters of my and 7wpa are partially shared, it can
be seen as pre-training for the failure-aware policy mga .

To train the failure-aware policy, we apply value-based
RL algorithms. For each episode, the policy is provided with
the observation at the first step and chooses an action. If the
feedback from the self-assessment module SA is positive,
then the episode ends. Otherwise, the failure-aware policy
mra Will take as input the memory representation m; and
re-choose an action until receiving positive feedback from
SA. During the training process, network parameters shared
with 7 will be fixed.

V. EXPERIMENTAL RESULTS

In this section, we will conduct experiments in three self-
assessable robotics tasks to: 1) evaluate the effectiveness
and advantages of our failure-aware policy compared with
other methods; 2) show the different performances of the two
failure-aware policy architectures; 3) investigate what kind of
policy is optimal for the sequential decision making problem
under invariant observation.

A. Experimental Setup

We consider three typical self-assessable robotics
tasks (Fig. 3) for evaluation. The first task is sequential image
classification on ImageNet [36] motivated by [1]. In this task,
the robot observes an image at the beginning of an episode,
and identifies a label for this image. After choosing a label,
the self-assessment module will indicate whether the choice is
correct or not. The second task is object reorientation, where
a robot is supposed to choose a reorientation object pose to
achieve a feasible pick-reorient-place process (i.e. successful
path planning of the whole manipulation) with path planning
cost as less as possible [13]. For this task, the policy is trained
in SAPIEN [37] with a URS arm, tested with unseen samples,
and evaluated in real world. Self-assessment is conducted
by path planning algorithms, which guarantee the execution
success. And the last is localization on synthetic dataset
[38] and real-world dataset UPO [39] and Bicocca [40], [41],
which predicts the position of the robot given a global map and
an observed scan, and gets the assessment of the localization
accuracy. In this task, if the predicted position is at the
k x k neighborhood of the ground truth position, then the
action is regarded as successful. Note that the robot will
re-choose action after getting the self-assessment results until
evaluated as successful or up to the limited trial times. In real
applications, we can use registration algorithms as the self-
assessment module which measures localization accuracy.
Details of the self-assessment module of these tasks, the
learned policy, and implementations of our two architectures

coucal? x
lorikeet? X

Choose a reorientation pose the goal
jacamar? pose Rearrange to the goal pose

pose index: 3 X—-20X—9,/

Sequential Image Classification Object Reorientation

Localization

Fig. 3. Three tasks for evaluation.
TABLE I

TESTING PERFORMANCE OF SEQUENTIAL IMAGE CLASSIFICATION

Method tsr/% tns
RE 0.54 2.93
LPRE 70.06 1.01
SP 89.05 1.39
FMP-1 89.05 1.39
FMP-2 89.07 1.39

as well as the training and testing settings can be found in
Appendix [42].

B. Metrics and Baselines

In this work, we aim to achieve a reliable action as soon as
possible, since online self-assessment costs time and energy.
Thus, we limit the sequential trial number to ¢ = 5 times,
and measure the algorithms with the following metrics.

« Task Success Rate (tsr): Average task success rate across
all testing samples. If the policy passes the self-assessment
within 5 trials, then the corresponding testing sample is
regarded as successful.

o Trial Number to Success (tns): Average trial number to
get a success feedback from self-assessment of all success
samples.

All the tasks are measured with tsr and tms, which
demonstrate the effectiveness and efficiency of action re-
choosing based on previous failed trials. Also, an additional
metric is tested for the object reorientation task:

« Planning Cost (pc): Average path planning cost across all
testing samples. It is a unique metric for object reorientation
task, where robot is supposed to choose a reorientation
pose with path planning cost as less as possible.

We compare the performance of our system to the following
baseline approaches:

Random Exploration (RE). A policy which selects actions
uniformly at random from the candidate action set A.

Learned Policy with Random Exploration (LPRE). A
policy that uses the learned policy mq for the first step, and if
failed, then use the RE policy among the remaining actions.

Sorting Policy (SP). A policy that uses the process-of-
elimination strategy.

Also, we name our policies of two architecture as Failure-
aware Feature Masking Policy (FMP-1) and Failure-aware
Recurrent Memory Policy (FMP-2) respectively.

C. Results

Comparisons to Baselines. First, we compare our method
with baselines in three tasks. For sequential image classifica-
tion, we evaluate each method with the validation dataset of
ImageNet [36]. Note that in this task we regard the output
of my as the observation feature embedding (more details
can be found in Appendix [42]). That is, SP and FMP-
1 have the same settings for this task, thus reporting the

9547

Authorized licensed use limited to: Zhejiang University. Downloaded on July 09,2024 at 05:23:33 UTC from IEEE Xplore. Restrictions apply.

TABLE I
TESTING PERFORMANCE OF OBJECT REORIENTATION

Method tsr/% 100/pc tns
RE 77.50 3.07 2.18
LPRE 79.33 3.48 1.90
Sp 81.64 3.25 2.05
FMP-1 86.96 391 1.77
FMP-2 89.37 4.55 1.61
TABLE III

TESTING PERFORMANCE OF LOCALIZATION IN SYNTHETIC
ENVIRONMENTS.

Method tst/% tns
LPRE 83.95 1.01

SP 84.23 1.01
FMP-1 94.53 1.47
FMP-2 85.02 1.04

same performances. We can see from Table I that except for
RE, LPRE shows the worst performance, while other three
methods demonstrate similar performances. Referring to the
analysis in [1], which proves that SP is an optimal policy
for the sequential image classification task, our experimental
results further figure out that FMP-1 and FMP-2 can also
achieve optimal performance for this task.

For the object reorientation experiments, we present an
additional metric “pc” in the reciprocal form, since the path
planning cost will be infinite if the planning fails. Each
method is evaluated with 207 unseen samples. Results in
Table II show that FMP-2 outperforms other methods across
all metrics, followed by FMP-1, which demonstrates that
integrating the previous failure memory into policy training
endows better policy tune-up during online testing and
better generalization performance. Also, FMP-2 reports better
performance than FMP-1 across all metrics. This might be
due to the fact that, in this task, there exist some candidate
reorientation poses which are similar to each other, thus
leading to a similar point cloud feature. However, similar
poses do not mean similar task assessment results. For
example, flipping an object will fail due to the collision
between the gripper and the table. But if the object is with
a similar pose which leaves small space for the gripper,
such manipulation might succeed. For FMP-1, it utilizes
previous failures by conducting feature masking, which might
hinder some possible successful actions. Moreover, randomly
choosing actions among the remaining ones (LPRE), or
applying memory as a mask (SP) neglects the dependency
between the failure trials and the remaining actions, which
shows lower performance compared to our policies. Besides,
we can find that the performance RE is not too bad due to
the small action set of this task.

As for the localization task, the testing localization samples
include three testing sequences in synthetic environments [38]
and two testing sequences in real environments. Evaluation
results in synthetic environments are shown in Table III
(k = 15, more detailed results and ablation studies on k
can be found in Appendix [42]). It is obvious that FMP-1
achieves the best performance in the episode success rate with
an average trial number less than 2. This large performance
margin might come from the feature masking process, which

] 12 W 3.84
g 12,7 8]
2l us | §, 2.99 315 307
] 1 27715 79
o F
8.3

2 l‘7.33 L84 5 20] ‘ ‘ 2,06
s 8
o 6 1
s g
2] e 372 2. . -

s =
8 2] = rwpaours [B Zosf

FMP_2(0urs) . ‘ ‘

uPO Bicocca [V e] Bicocca

Fig. 4. Testing Performance of Localization in Real Environments.

hinders the similar feature of failed actions and encourages
the policy to jump from the previous choices. FMP-2 also
shows better task success rate compared to SP. Note that
the trial numbers to success of LPRE and SP are both close
to 1, which indicates that these two policies cannot conduct
effective adjustment by the self-assessment results. Fig. 4
demonstrates the testing results in real environments, which
shows that our policies have better task success rate than SP
and LPRE in all real environments. Overall, FMP-2 shows
better episode success rate, while FMP-1 costs less trials
to locate the position. This might be because the complex
geometry of real-world maps calls for exploration in a small
scope, which is the advantage of FMP-2, while FMP-1 might
hinder these similar positions if one of them fails. However,
by jumping from the previous failure zone, FMP-1 is able
to achieve success in less trials. Note that we use k = 15
because the complex geometry of real-world maps leads
to multi-modal predictions, and we choose the action with
maximum affordance in our experiments.

Case Studies. Fig. 5 presents some testing cases in the
localization task of three policies. Since SP does not change
its original distribution, all its decisions depend on the
distribution generated from my. Instead, FMP-1 concerns
more on the feature correlation. When aware of a failed
action, it can hinder the similar feature, thus jumping out of
the previous failure zone. Also, by leveraging the recurrent
implicit memory, FMP-2 is also capable of adjusting the
decisions, but shows a more conservative exploration process.
Also, we can see the normalized probability changes of all
feasible reorientation poses in an object reorientation case in
Fig. 6. In this task, the feasible poses are not unique, and the
similar poses (with near pose indexes) do not mean similar
feasibility. In this task, FMP-2 performs better because it
tends to explore the near pose first to confirm its feasibility.
More case studies are shown in Appendix [42].

D. Discussion

Considering the architecture designs of our models and all
the experimental results, we further analyze the advantages
of our method, and how to choose an optimal policy in a
specific tasks:

What are the advantages of two policy architectures?
The same advantage of these two policy architectures is
learnable. By integrating the self-assessment results into the
policy training, FMP-1 and FMP-2 acquire the awareness of
the previous failures, and have the capability of trimming the
policy distribution according to these failures. However, these
two architectures show different properties. FMP-1 concerns
more on the feature correlation, and tends to hinder the actions
with similar features to that of the previously failed choices.

9548

Authorized licensed use limited to: Zhejiang University. Downloaded on July 09,2024 at 05:23:33 UTC from IEEE Xplore. Restrictions apply.

GT FMP-1(Ours)

P X

Scan

F!

Fig. 5. Testing cases in localization task of three policies. The top row is a

where the value comes larger as the color comes closer to red. v means that

FMP-2(Ours)

case in a synthetic environment. The left two columns show the global map
with the ground truth position labeled as a red point, and the scan observation. Other columns show the prediction process and the distributions of three

policies. The remaining row shows a case in the UPO dataset, where the keys are zoomed in with yellow boxes. The distribution is reflected by the color,

MP-2(Ours)

the policy successfully find the right position, while Xmeans a failure.

0,070
—e— selected pose 0.052
—e— reorientation pose 4

—e— reorientation pose 13
—e— reorientation pose 18

- reorientation pose 23

—e— selected pose
—e— reorientation pose 4
—e— reorientation pose 1
—e— reorientation pose 1.
~e— reorientation pose 2

0.065 0,050

0.060 0.048

°
°
2
&

0.044

Probability
o o
s 8
3 &
Probability

0.042
0.045

0.040
0.040

0.038

=eo— selected pose

—e— reorientation pose 4
—e— reorientation pose 13
—e— reorientation pose 18
- reorientation pose 23

3
8
3/~

Probability

Step

sP X

Fig. 6.

FMP-
A Testing case in reorientation task of three policies. The setting of this case is: magic clean, initial pose: (-0.16, 0.16, 0.03, 1.59, 0.01, -3.14),

Step

FMP-2(Ours) v/

Step

1(Ours) v/

target pose: (-0.15, 0.09, 0.13, 0.0, 0.0, 0.0), feasible reorientation poses indexes: (4, 13, 18, 23). We plot the normalized probability distributions of feasible

poses the selected pose at all trial steps, and the stars label successful trials.
failure. The decision sequences of three policies are SP: 12—7—2—17—38,

Thus, FMP-1 can achieve better performance in tasks where
similar features (e.g. pose, geometry, visual attribute, and
etc) lead to similar self-assessment results. Instead, FMP-2
pays more attention to the recurrent memory, which encodes
the observation feature and the previous trials. Consequently,
FMP-2 conducts a more conservative exploration process
than FMP-1, and demonstrates better performances in tasks
requiring an adjustment in a small scope.

What kind of policies is optimal? For a task where similar
features lead to similar self-assessment results, FMP-1 can
help jump out of local minimum, while for a task which
needs to adjust in a small scope of the initial action, FMP-2
shows better exploration strategy. Also, analyzing the results
of the three tasks, we figure out that, when the actions are
correlated, our method outperforms the process-of-elimination
strategy. That is, when the actions are correlated, the equality
is broken between the action with the next-highest affordance
and the action with the highest affordance conditioned on
previous failures. For sequential image classification, there
is little correlation among different class choices. And the
training data is adequate for fitting the distributions of all
classes. Therefore, a simple process-of-elimination strategy
can achieve optimal performance. Instead, as the action
correlation increases, integrating action correlation into the

means that the policy successfully finds the right pose, while Xmeans a
FMP-1: 22—15—3—2—23, FMP-2: 24—17—13.

policy learning endows better performance. Hence, we can
achieve better performances in the localization task, and show
the biggest advantage in the object reorientation task, whose
actions have the highest correlation.

E. Conclusion and Limitation

In this paper, we propose to integrate the self-assessment
results to learn a failure-aware policy, and propose two policy
architectures. Experiments in three self-assessable robotics
tasks demonstrate that our method outperforms other methods
with higher task success rate with less trials. Moreover, we
find that the action correlation has a large impact on the effect
of our algorithm. The main limitation of our method lies in
the assumption of the discrete action set. This limitation
comes from the construction of the representation my. In
our paper, it is represented as a finite matrix, of which
each element corresponds an action. In future work, more
general representations of m; for continuous actions can
be studied. Also, in this paper, we assume that the self-
assessment module can accurately predict failure, and 7 is
a learned differentiable policy with a feature bottleneck layer.
Further works can involve the assessment uncertainty in more
real-world applications, and extend to more general 7. More
analysis and experiments can be assessed in Appendix [42].

9549

Authorized licensed use limited to: Zhejiang University. Downloaded on July 09,2024 at 05:23:33 UTC from IEEE Xplore. Restrictions apply.

[1]

[2

—

[4

=

[5]

[6

=

[7

—

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

REFERENCES

D. Ghosh, J. Rahme, A. Kumar, A. Zhang, R. P. Adams, and S. Levine,
“Why generalization in rl is difficult: Epistemic pomdps and implicit
partial observability,” Advances in Neural Information Processing
Systems, vol. 34, 2021.

D. Isele, A. Nakhaei, and K. Fujimura, “Safe reinforcement learning
on autonomous vehicles,” in 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). 1EEE, 2018, pp. 1-6.

K. Srinivasan, B. Eysenbach, S. Ha, J. Tan, and C. Finn, “Learning to
be safe: Deep rl with a safety critic,” arXiv preprint arXiv:2010.14603,
2020.

H. Krasowski, X. Wang, and M. Althoff, “Safe reinforcement learning
for autonomous lane changing using set-based prediction,” in 2020
IEEE 23rd International Conference on Intelligent Transportation
Systems (ITSC). 1EEE, 2020, pp. 1-7.

K. Mokhtari and A. R. Wagner, “Safe deep g-network for autonomous
vehicles at unsignalized intersection,” arXiv preprint arXiv:2106.04561,
2021.

K. Lin, R. Zhao, Z. Xu, and J. Zhou, “Efficient large-scale fleet man-
agement via multi-agent deep reinforcement learning,” in Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2018, pp. 1774-1783.

D. Chen, Z. Li, Y. Wang, L. Jiang, and Y. Wang, “Deep multi-agent
reinforcement learning for highway on-ramp merging in mixed traffic,”
arXiv preprint arXiv:2105.05701, 2021.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

K. Cho, B. Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning phrase representations using rnn encoder-decoder
for statistical machine translation,” in EMNLP, 2014.

G. J. Burghouts, A. Huizing, and M. A. Neerincx, “Robotic self-
assessment of competence,” ACM/IEEE International Conference on
Human-Robot Interaction (HRI), 2020.

A. Norton, H. Admoni, J. Crandall, T. Fitzgerald, A. Gautam,
M. Goodrich, A. Saretsky, M. Scheutz, R. Simmons, A. Steinfeld et al.,
“Metrics for robot proficiency self-assessment and communication of
proficiency in human-robot teams,” ACM Transactions on Human-Robot
Interaction, 2022.

P. Deptula, H.-Y. Chen, R. A. Licitra, J. A. Rosenfeld, and W. E.
Dixon, “Approximate optimal motion planning to avoid unknown
moving avoidance regions,” IEEE Transactions on Robotics, vol. 36,
no. 2, pp. 414430, 2019.

K. Xu, H. Yu, R. Huang, D. Guo, Y. Wang, and R. Xiong, “Efficient
object manipulation to an arbitrary goal pose: Learning-based anytime
prioritized planning,” 2022 IEEE International Conference on Robotics
and Automation (ICRA), 2022.

V. Kumar, S. Ha, and C. K. Liu, “Error-aware policy learning: Zero-shot
generalization in partially observable dynamic environments,” Robotics:
Science and Systems (RSS), 2021.

C. Finn and S. Levine, “Deep visual foresight for planning robot
motion,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA). 1EEE, 2017, pp. 2786-2793.

F. Ebert, C. Finn, S. Dasari, A. Xie, A. Lee, and S. Levine, “Visual
foresight: Model-based deep reinforcement learning for vision-based
robotic control,” arXiv preprint arXiv:1812.00568, 2018.

A. Wang, T. Kurutach, K. Liu, P. Abbeel, and A. Tamar, “Learning
robotic manipulation through visual planning and acting,” in Robotics:
science and systems, 2019.

N. Di Palo and E. Johns, “Safari: Safe and active robot imitation
learning with imagination,” arXiv preprint arXiv:2011.09586, 2020.
K. Xu, H. Yu, Q. Lai, Y. Wang, and R. Xiong, “Efficient learning of
goal-oriented push-grasping synergy in clutter,” IEEE Robotics and
Automation Letters, vol. 6, no. 4, pp. 6337-6344, 2021.

Z. Xu, Z. He, J. Wu, and S. Song, “Learning 3d dynamic scene
representations for robot manipulation,” in Conference on Robot
Learning. PMLR, 2021, pp. 126-142.

C. Richter and N. Roy, “Safe visual navigation via deep learning and
novelty detection,” 2017.

L. Wellhausen, R. Ranftl, and M. Hutter, “Safe robot navigation
via multi-modal anomaly detection,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 1326-1333, 2020.

G. Kahn, A. Villaflor, V. Pong, P. Abbeel, and S. Levine, “Uncertainty-
aware reinforcement learning for collision avoidance,” arXiv preprint
arXiv:1702.01182, 2017.

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

9550

B. Liitjens, M. Everett, and J. P. How, “Safe reinforcement learning
with model uncertainty estimates,” in 2019 International Conference
on Robotics and Automation (ICRA). 1EEE, 2019, pp. 8662-8668.
J. Wong, A. Tung, A. Kurenkov, A. Mandlekar, L. Fei-Fei, S. Savarese,
and R. Martin-Martin, “Error-aware imitation learning from teleopera-
tion data for mobile manipulation,” in Conference on Robot Learning.
PMLR, 2022, pp. 1367-1378.

R. Martinez-Cantin, N. de Freitas, A. Doucet, and J. A. Castellanos,
“Active policy learning for robot planning and exploration under
uncertainty.” in Robotics: Science and systems, vol. 3, 2007, pp. 321—
328.

J. Peters, K. Mulling, and Y. Altun, “Relative entropy policy search,”
in Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.
R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. De Turck, and
P. Abbeel, “Vime: Variational information maximizing exploration,”
Advances in neural information processing systems, vol. 29, 2016.
M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and
R. Munos, “Unifying count-based exploration and intrinsic motivation,”
Advances in neural information processing systems, vol. 29, 2016.

D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in International conference
on machine learning. PMLR, 2017, pp. 2778-2787.

H. Tang, R. Houthooft, D. Foote, A. Stooke, O. Xi Chen, Y. Duan,
J. Schulman, F. DeTurck, and P. Abbeel, “# exploration: A study of
count-based exploration for deep reinforcement learning,” Advances in
neural information processing systems, vol. 30, 2017.

Y. Burda, H. Edwards, A. Storkey, and O. Klimov, “Exploration by
random network distillation,” arXiv preprint arXiv:1810.12894, 2018.
M. C. Machado, M. G. Bellemare, and M. Bowling, “Count-based
exploration with the successor representation,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, no. 04, 2020, pp.
5125-5133.

W. E. Whitney, M. Bloesch, J. T. Springenberg, A. Abdolmaleki,
K. Cho, and M. Riedmiller, “Decoupled exploration and exploitation
policies for sample-efficient reinforcement learning,” arXiv preprint
arXiv:2101.09458, 2021.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference
on computer vision and pattern recognition. leee, 2009, pp. 248-255.
F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang,
Y. Yuan, H. Wang et al., “Sapien: A simulated part-based interactive en-
vironment,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 11097-11 107.

R. Chen, H. Yin, Y. Jiao, G. Dissanayake, Y. Wang, and R. Xiong,
“Deep samplable observation model for global localization and kid-
napping,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp.
2296-2303, 2021.

R. Ramon-Vigo, J. Pérez, F. Caballero, and L. Merino, “Navigating
among people in crowded environment: Datasets for localization and
human robot interaction,” in Proceedings of the Workshop on Robots in
Clutter: Perception and Interaction in Clutter, IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Citeseer, 2014.
A. Bonarini, W. Burgard, G. A. E. Fontana, M. Matteucci, D. Sorrenti,
and J. Tardos, “Rawseeds: Robotics advancement through web-
publishing of sensorial and elaborated extensive data sets,” in Workshop
on Benchmarks in Robotics Research at IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2006), 2006,
pp- 1-5.

S. Ceriani, G. Fontana, A. Giusti, D. Marzorati, M. Matteucci,
D. Migliore, D. Rizzi, D. G. Sorrenti, and P. Taddei, “Rawseeds ground
truth collection systems for indoor self-localization and mapping,”
Autonomous Robots, vol. 27, no. 4, pp. 353-371, 2009.

K. Xu, “Paper with appendix,” https://arxiv.org/abs/2302.13024, 2021.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

R. Wightman, “Pytorch image models,” https://github.com/rwightman/
pytorch-image-models, 2019.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529-533, 2015.

Authorized licensed use limited to: Zhejiang University. Downloaded on July 09,2024 at 05:23:33 UTC from IEEE Xplore. Restrictions apply.

